Performance analysis of least-squares Khatri-Rao factorization

Yao Cheng¹, Sher Ali Cheema¹, Martin Haardt¹, Amir Weiss² and Arie Yeredor²

¹Communications Research Laboratory
Ilmenau University of Technology
P.O. Box 10 05 65, D-98684 Ilmenau, Germany

²School of Electrical Engineering
Tel-Aviv University
P.O. Box 39040, Tel-Aviv 69978, Israel

Abstract—The least-squares Khatri-Rao factorization is regarded as an important linear- and multilinear-algebraic tool and finds applications in, for instance, computation of the CP decomposition and channel estimation for two-way relaying systems. We conduct a “first-order” perturbation analysis for it, which is a crucial step towards establishing analytical performance evaluation of various schemes employing the least-squares Khatri-Rao factorization. Numerical results validating our analytical performance analysis are shown. Being new advance in perturbation analysis on matrix decompositions, the performance analysis of the least-squares Khatri-Rao factorization presented in this paper will also contribute to a promising enhancement of the SECSI-GU framework, which is able to estimate the loading matrices in a CP decomposition, both efficiently and accurately.

I. INTRODUCTION

Linear and multilinear algebra play a significant role in a variety of research fields, including, e.g., signal processing, wireless communications, and image processing. Many problems have been modeled into and in the end successfully solved by matrix and tensor decompositions [1]-[8]. The least-squares Khatri-Rao factorization is one of such crucial linear- and multilinear-algebraic tools, which has applications in the semi-algebraic framework for approximate CP decompositions via simultaneous matrix diagonalizations (SECSI) [9] via generalized unfoldings (SECSI-GU) [10], dual-symmetric parallel factor analysis [11], tensor-based channel estimation for two-way relaying systems [12], R-D parameter estimation [13], etc. Consider the Khatri-Rao product of R matrices $F_r \in \mathbb{C}^{M_r \times d}$, $r = 1, 2, \ldots, R$

$$F = F_1 \circ F_2 \circ \ldots \circ F_R \in \mathbb{C}^{M \times d},$$

(1)

where $M = \prod_{r=1}^{R} M_r$, and \circ symbolizes the Khatri-Rao (column-wise Kronecker) product. In many applications, a least-squares Khatri-Rao factorization is applied on the perturbed version of F:

$$\hat{F} = F + \Delta F,$$

(2)

resulting from some measurement data, e.g., contaminated by noise. To employ the least-squares Khatri-Rao factorization to obtain the R factor matrices, we first take the s-th column of $F \in \mathbb{C}^{M \times d}$ denoted by $f^{(s)}$, $s = 1, 2, \ldots, d$, and arrange it into an R-way rank-1 tensor $F^{(s)} \in \mathbb{C}^{M_1 \times \cdots \times M_R}$. Fig. 1 illustrates a noiseless case, where $R = 3, M_1 = M_2 = M_3 = 2, d = 2$. We use $f^{(s)}$ and $F^{(s)}$ ($s = 1, 2$) to represent the s-th column of F and the corresponding rank-1 tensor constructed from $f^{(s)}$, respectively. Then the truncated higher-order SVD (HOSVD) of $F^{(s)}$ is computed such that an estimate of the s-th column of F, $\hat{f}^{(s)}$, $s = 1, 2, \ldots, R$, is estimated as

$$\hat{f}^{(s)} = \begin{cases} \hat{u}_{r,s}^{[s]} \cdot \delta^{[s]}, & r \neq 1 \\ \hat{u}_{1,s}^{[s]} \cdot \hat{u}_{r,s}^{[s]}, & r = 1 \end{cases}$$

(3)

where $\hat{u}_{r,s}^{[s]}$ is the first left singular vector of the r-mode unfolding of $F^{(s)}$, and the scalar $\delta^{[s]}$ is in fact the only element of the core tensor from the truncated HOSVD given by

$$\delta^{[s]} = \hat{F}^{(s)} \cdot \hat{u}_{1,s}^{[s]} \cdot \hat{u}_{1,s}^{[s]^H} \cdot \hat{u}_{1,s}^{[s]^H} \cdot \hat{u}_{1,s}^{[s]^H} \cdot \hat{u}_{1,s}^{[s]^H}. \quad (4)$$

Note that throughout this paper, the r-mode product between an R-way tensor with size I_r along mode $r = 1, 2, \ldots, R$ represented as $A \in \mathbb{C}^{I_1 \times I_2 \times \cdots \times I_R}$ and a matrix $U \in \mathbb{C}^{I_r \times l_r}$ is written as $A \times_r U$, whereas the r-mode vectors of A are obtained by varying the r-th index from 1 to I_r and keeping all other indices fixed. Aligning all r-mode vectors as the columns of a matrix yields the r-mode unfolding of A, which is denoted by $A^{(r)} \in \mathbb{C}^{I_1 \times I_2 \times \cdots \times I_{r-1} \times I_{r+1} \times \cdots \times I_R}$. In other words, $A^{(r)} = U^{(r)} \cdot A^{(r)}$. Here the reverse cyclical ordering of the columns, as proposed in [14], is used for the r-mode unfoldings. The tensor $I_{R,d}$ is an R-dimensional identity tensor of size $d \times d \times \cdots \times d$, which is equal to one if all R indices are equal and zero otherwise.

In recent years, the analytical performance analysis of matrix and tensor decompositions has attracted increased attention, and its value has been widely acknowledged [15]-[20]. For instance, the perturbation analysis of SVD and its application in the performance evaluation of subspace-based DOA estimation algorithms have been addressed in [15], [16], etc. The prosperous development of multilinear signal processing, on the other hand, has sparked interest in the performance analysis of tensor decompositions, including the truncated HOSVD [19] and the approximate CP decomposition [20]. It is of theoretical and practical interest to conduct an analytical performance analysis on the least-squares Khatri-Rao factorization, which predicts the accuracy of the factor matrices estimation in the presence of perturbation. This will also serve as an indispensable part of an analytical performance evaluation for schemes, where the least-squares Khatri-Rao factorization is employed, such as SECSI-
II. CLOSED-FORM EXPRESSION OF THE RELATIVE MEAN SQUARE FACTOR ERROR (rMSFE)

In this section, we derive the closed-form expression of the rMSFE with respect to the r-th factor matrix \(F_r \). Let us assume that the covariance matrix of \(n = \text{vec}\{\Delta F\} \in \mathbb{C}^{M \times d} \) is known. It is denoted as \(R_{nn} = \mathbb{E}\{n \cdot n^H\} \). Here \(\text{vec}\{\cdot\} \) symbolizes the vectorization operation of its input matrix. The rMSFE with respect to the r-th factor matrix \(F_r \) is written as

\[
\text{rMSFE}_{r} = \mathbb{E}\left\{ \frac{\|F_r - \hat{F}_r \cdot P^{(\text{opt})}_r\|^2_F}{\|F_r\|^2_F} \right\},
\]

where \(\hat{F}_r \) denotes an estimate of \(F_r \) obtained via the least-squares Khatri-Rao factorization, and \(P^{(\text{opt})}_r \) is a diagonal matrix that corrects the scaling ambiguity inherent in the estimation of the factor matrices. In addition, we use \(\|\cdot\|_F \) to denote the Frobenius norm of a matrix. Note that the least-squares Khatri-Rao factorization estimates the factor matrices up to inevitable permutation and scaling ambiguities. For the performance analysis only the scaling ambiguity is relevant. A performance evaluation of the least-squares Khatri-Rao factorization, being either empirical or analytical as we present in this paper, uses the knowledge of the “true” factor matrices to resolve the aforementioned ambiguities such that relative errors in estimating the factor matrices are computed either numerically or predicted theoretically.

As shown in [20], we approximate \((F_r - \hat{F}_r \cdot P^{(\text{opt})}_r)\) in the expression of the rMSFE given in [5] as

\[
F_r - \hat{F}_r \cdot P^{(\text{opt})}_r \approx F_r - \text{Ddiag}\left(F_r^H \cdot \Delta F_r \right) \cdot D^{-1} - \Delta F_r,
\]

where \(\text{Ddiag}\{\cdot\} \) denotes the operation of extracting the diagonal elements of the input matrix and then using them as the diagonal of a diagonal matrix, and \(D = \text{Ddiag}\{F_r^H \cdot F_r\} \). In other words, the s-th diagonal element of \(D \), where \(s = 1, 2, \ldots, d \), can be expressed as \(f_r(s)^H \cdot f_r(s) \). Consequently, the approximation of the s-th column of \((F_r - \hat{F}_r \cdot P^{(\text{opt})}_r)^r\), represented by a short-hand notation \(\Delta \hat{f}_r(s) \), is written as

\[
\Delta \hat{f}_r(s) \approx f_r(s) \cdot \frac{f_r(s)^H \cdot \Delta f_r(s) - f_r(s)^H}{f_r(s)^H} - f_r(s),
\]

where we use \(\Delta f_r(s) \in \mathbb{C}^{M_r} \) to denote the s-th column of the perturbation of the r-th factor matrix \(\Delta F_r \). For a matrix \(A \) having \(d \) columns denoted by \(a^{(s)} \), \(s = 1, 2, \ldots, d \)

\[
\|A\|^2_F = \sum_{s=1}^{d} \text{trace}\left\{ a^{(s)} \cdot a^{(s)^H} \right\}.
\]

We apply this to \(\|F_r - \hat{F}_r \cdot P^{(\text{opt})}_r\|^2_F \) such that the rMSFE with respect to the r-th factor matrix \(F_r \) can be computed as

\[
\text{rMSFE}_{r} = \mathbb{E}\left\{ \frac{1}{\|F_r\|^2_F} \sum_{s=1}^{d} \text{trace}\left\{ \Delta \hat{f}_r(s) \cdot \Delta \hat{f}_r(s)^H \right\} \right\}.
\]

Therefore, in the following, we derive the s-th column of \(\Delta F_r \), \(\Delta f_r(s) \), and finally the closed-form expression of the rMSFE, differentiating two cases, where \(r \neq 1 \) and \(r = 1 \), respectively.

For \(r \neq 1 \), based on the perturbation analysis on the SVD [15] of \(\mathbb{F}^{(s)}_{r} \in \mathbb{C}^{M_r \times M'_r} \) with \(M'_r = \frac{M_r}{r} \); \(\Delta f_r(s) \) takes the following form

\[
\Delta f_r(s) = \Delta u_{[s]}(r,s) \cdot \left(\Delta \mathbb{F}^{(s)}_{r} \right)_{(r,s)} \cdot v_{[s]}^r \cdot \sigma_{[s]}^{-1} + O(\Delta^2),
\]

where \(\mathbb{F}^{(s)}_{r} = U_{[s]}(r,s) \cdot U_{[s]}^H(r,s) \) and \(U_{[s]}(r,s) \) is the orthonormal basis of the null space of \(\mathbb{F}^{(s)}_{r} \). \(v_{[s]}^r \) is the first right singular vector of \(\mathbb{F}^{(s)}_{r} \), and \(\sigma_{[s]}(r,s) \) is the corresponding singular value. Throughout the paper, we use \(O(\Delta^2) \) to represent all terms with an order higher than one, i.e., second-order, third-order, and so forth.

The r-mode unfolding of the perturbation of \(\mathbb{F}^{(s)}_{r} \) can be expressed with \(\Delta f_r(s) \in \mathbb{C}^{M_r} \) representing the s-th column of \(\Delta F_r \) as

\[
\left(\Delta \mathbb{F}^{(s)}_{r} \right)_{(r,s)} = J_r \cdot \left(I_{M'_r} \otimes \Delta f_r(s) \right) \in \mathbb{C}^{M_r \times M'_r}.
\]

where \(\otimes \) denotes the Kronecker product, \(I_{M'_r} \) represents an \(M'_r \times M'_r \) identity matrix, and \(J_r \in \mathbb{R}^{M_r \times (M'_r)} \) is a selection matrix employed to rearrange \(f_r(s) \) into the r-mode unfolding of \(\mathbb{F}^{(s)}_{r} \) formed by \(f_r(s) \) as illustrated in Fig. 1.

Inserting (11) into (10) followed by some manipulations yields

\[
\Delta f_r(s) = K_{6}^{(r,s)}(s) \cdot \left(I_{M'_r} \otimes \Delta f_r(s) \right) \cdot \Delta f_r(s) + O(\Delta^2),
\]

where

\[
K_{6}^{(r,s)}(s) = \Delta u_{[s]}(r,s) \cdot \left(I_{M'_r} \otimes J_r \right) \in \mathbb{C}^{M_r \times (M'_r)},
\]

\[
v_{[s]}^r \cdot \sigma_{[s]}^{-1} \in \mathbb{C}^{M'_r},
\]

\[
v_{[s]}^r = v_{[s]}^r \otimes n \in \mathbb{C}^{M \cdot M'_r}.
\]

Here \(J(s) \in \mathbb{R}^{M \times M \cdot d} \) denotes a selection matrix leading to

\[
\Delta f_r(s) = J(s) \cdot n.
\]

With \(\Delta f_r(s) \) in (12), \(\Delta \hat{f}_r(s) \) given in (7) is now written as

\[
\Delta \hat{f}_r(s) \approx K_{1}^{(r,s)} \cdot w_r(s),
\]

where

\[
K_{1}^{(r,s)} = f_r(s) \cdot f_r(s)^H \cdot K_{6}^{(r,s)} - K_{6}^{(r,s)} \cdot f_r(s)^H.
\]

Note that \(\Delta \hat{f}_r(s) \) in the expression of \(K_{1}^{(r,s)} \) given by (13) is a projection matrix into the null space of \(\mathbb{F}^{(s)}_{r} \), whereas \(f_r(s) \) spans
the column space of $[\mathcal{F}(s)](r)$. Due to this observation, the first term in $K_{1}^{(r,s)}$, i.e., $f_{r}^{(s)} \cdot f_{(r,s)}^{(s)} \cdot K_{0}^{(r,s)}$, is a zero matrix. Thus, we obtain

$$K_{1}^{(r,s)} = -K_{0}^{(r,s)}. \quad (19)$$

Based on the fact that

$$R_{w}^{(r,s)} = \mathbb{E}\{w_{r}(s)^{T} \cdot w_{r}(s)\} = (v_{r}(s), v_{r}(s)) \otimes R_{w},$$

the rMSFE of F_{r} in (19) is obtained as

$$r\text{MSFE}(r) = \sum_{s=1}^{d} \text{trace} \left\{ K_{1}^{(r,s)} R_{w}^{(r,s)} \cdot K_{0}^{(r,s)T} \right\} \| F_{r} \|_{F}^{2}, \quad r \neq 1 \quad (20)$$

where $\text{Re}\{\cdot\}$ symbolizes the real part of the input argument.

When $r = 1$, with the perturbed version of $f_{1}^{(s)}$ given by

$$\tilde{f}_{1}^{(s)} = \left(s_{1}^{(s)} + \Delta s_{1}^{(s)} \right) \cdot \left(u_{1,1}^{(s)} + \Delta u_{1,1}^{(s)} \right), \quad (21)$$

$\Delta f_{1}^{(s)}$ is approximated as

$$\Delta f_{1}^{(s)} \approx \Delta s_{1}^{(s)} \cdot u_{1,1}^{(s)} + \Delta u_{1,1}^{(s)} \cdot s_{1}^{(s)}, \quad (22)$$

neglecting the second-order terms. Note that $\Delta u_{1,1}^{(s)}$ is already obtained through (12). Thus, based on the expression of $s_{1}^{(s)}$ in (4), we approximate its perturbation $\Delta s_{1}^{(s)}$ as

$$\Delta s_{1}^{(s)} \approx \mathcal{F}(s)_{1,1} \cdot \Delta u_{1,1}^{(s)} \times u_{2,1}^{(s)} \times u_{3,1}^{(s)} \times \cdots \times R u_{R,1}^{(s)}$$

$$+ \mathcal{F}(s)_{1,1} \cdot u_{1,1}^{(s)} \times \Delta u_{2,1}^{(s)} \times u_{3,1}^{(s)} \times \cdots \times R u_{R,1}^{(s)}$$

$$\vdots$$

$$+ \mathcal{F}(s)_{1,1} \cdot u_{1,1}^{(s)} \times u_{2,1}^{(s)} \times \Delta u_{3,1}^{(s)} \times \cdots \times R u_{R,1}^{(s)}$$

$$+ \Delta \mathcal{F}(s)_{1,1} \cdot u_{1,1}^{(s)} \times u_{2,1}^{(s)} \times u_{3,1}^{(s)} \times \cdots \times R u_{R,1}^{(s)}. \quad (23)$$

Now let us take a close look at the first R items in expression of $\Delta s_{1}^{(s)}$, shown above. The r-mode unfolding of the r-th term ($r = 1, 2, \ldots, R$) takes the following form

$$\Delta u_{1,1}^{(s)} \cdot \mathcal{F}(s)_{(r)} \cdot \left(u_{1,1}^{(s)} \otimes u_{2,1}^{(s)} \otimes \cdots \otimes u_{R,1}^{(s)} \right) \cdot \left(u_{1,1}^{(s)} \otimes \cdots \otimes u_{1,1}^{(s)} \right)^{T}. \quad (24)$$

Due to the fact that $K_{1}^{(r,s)}$ in the expression of $\Delta u_{r,1}^{(s)}$ given by (12) represents a projection matrix into the null space of $[\mathcal{F}(s)]_{(r)}$, the first R terms of $\Delta s_{1}^{(s)}$ are zeros. This observation enables us to simplify $\Delta s_{1}^{(s)}$ into

$$\Delta s_{1}^{(s)} \approx \Delta \mathcal{F}(s)_{1,1} \cdot u_{1,1}^{(s)} \times u_{2,1}^{(s)} \times u_{3,1}^{(s)} \times \cdots \times R u_{R,1}^{(s)} \quad (25)$$

Further manipulations on (25) lead to

$$\Delta s_{1}^{(s)} \approx g_{1,1}^{(s)} \cdot P \cdot \Delta f_{1}^{(s)}, \quad (26)$$

where

$$g_{1,1}^{(s)} = u_{1,1}^{(s)} \otimes u_{2,1}^{(s)} \otimes \cdots \otimes u_{R,1}^{(s)} \otimes u_{1,1}^{(s)}, \quad (27)$$

and $P \in \{0, 1\}^{M \times M}$ is a permutation matrix satisfying

$$\text{vec} \left\{ \Delta \mathcal{F}(s)_{(r)} \right\} \cong P \cdot \Delta f_{1}^{(s)}. \quad (28)$$

With $\Delta u_{r,1}^{(s)}$, $r = 1, \ldots, R$, and $\Delta s_{1}^{(s)}$ obtained via (12) and (26), respectively, $\Delta f_{1}^{(s)}$ is written as

$$\Delta f_{1}^{(s)} \approx s_{1}^{(s)} \cdot K_{0}^{(1,s)} \cdot w_{1}^{(s)} + \left(g_{1,1}^{(s)} \cdot P \cdot J^{(s)} \cdot n_{1}^{(s)} \right) \cdot u_{1,1}^{(s)} \quad (29)$$

where (16) is used to substitute $\Delta f_{1}^{(s)}$ in (25). In the subsequent derivations, we use the following simplified expression of $\Delta f_{1}^{(s)}$

$$\Delta f_{1}^{(s)} \approx s_{1}^{(s)} \cdot K_{0}^{(1,s)} \cdot w_{1}^{(s)} + u_{1,1}^{(s)} \cdot a_{1}^{(s)}. \quad (30)$$

Thus, the key ingredient for the closed-form expression of the rMSFE of F_{1} is obtained as

$$\Delta f_{1}^{(s)} \approx f_{1}^{(s)} - s_{1}^{(s)} \cdot K_{0}^{(1,s)} \cdot w_{1}^{(s)}$$

$$+ f_{1}^{(s)} \cdot u_{1,1}^{(s)} \cdot a_{1}^{(s)} - u_{1,1}^{(s)} \cdot a_{1}^{(s)}. \quad (32)$$

The first term in (32) is a zero vector owing to a similar observation as previously that $\Gamma^{(s)}$ in the expression of $K_{0}^{(1,s)}$ is a projection matrix into the null space of $[\mathcal{F}(s)]_{(1)}$, whereas $f_{1}^{(s)}$ spans the column space of $[\mathcal{F}(s)]_{(1)}$. In addition, with the fact that

$$f_{1}^{(s)} = b_{1,1}^{(s)} \cdot s_{1}^{(s)} \cdot u_{1,1}^{(s)}, \quad (33)$$

where $b_{1,1}^{(s)}$ is a short-hand notation for scaling, the third term in (32) is further written as

$$f_{1}^{(s)} \cdot u_{1,1}^{(s)} \cdot a_{1}^{(s)} = f_{1}^{(s)} - f_{1}^{(s)} \cdot f_{1}^{(s)} \cdot a_{1}^{(s)}$$

$$= f_{1}^{(s)} - f_{1}^{(s)} \cdot b_{1,1}^{(s)} \cdot s_{1}^{(s)} \cdot f_{1}^{(s)}$$

$$= f_{1}^{(s)} - b_{1,1}^{(s)} \cdot a_{1}^{(s)} \cdot a_{1}^{(s)} \cdot (34)$$

Hence, the expression of $\Delta f_{1}^{(s)}$ now simplified as

$$\Delta f_{1}^{(s)} \approx K_{1}^{(1,s)} \cdot w_{1}^{(s)}, \quad (35)$$

where

$$K_{1}^{(1,s)} = -s_{1}^{(s)} \cdot K_{0}^{(1,s)} \cdot (36)$$

The rMSFE in (20) obtained for the case where $r \neq 1$ also applies here for $r = 1$. To summarize, the closed-form expression of the rMSFE for the r-th factor matrix obtained via the least-squares Khatri-Rao factorization is given by

$$\text{rMSFE}(r) = \sum_{s=1}^{d} \text{trace} \left\{ K_{1}^{(r,s)} \cdot R_{w}^{(r,s)} \cdot K_{0}^{(r,s)T} \right\} \| F_{r} \|_{F}^{2}, \quad (37)$$

where

$$K_{1}^{(r,s)} = \left\{ \begin{array}{ll}
- K_{0}^{(r,s)}, & r \neq 1 \\
-s_{1}^{(s)} \cdot K_{0}^{(r,s)}, & r = 1.
\end{array} \right. \quad (38)$$
III. LEAST-SQUARES KHATRI-RAO FACTORIZATION AND ITS
PERFORMANCE ANALYSIS FOR SECSI-GU

The CP decomposition of an R-way rank-d tensor \(\mathbf{X} \in \mathbb{C}^{M_1 \times M_2 \times \cdots \times M_R} \) written as
\[
\mathbf{X} = \mathcal{I}_{R \times d} \times_1 \mathbf{F}_1 \times_2 \cdots \times_R \mathbf{F}_R
\]
can be efficiently computed via SECSI which algebraically formulates the CP decomposition into a set of simultaneous matrix diagonalization (SMD) problems [9]. Combining generalized unfoldings with the idea of considering all possible unfoldings to obtain multiple candidate CP models as in SECSI leads to SECSI-GU [10]. It outperforms SECSI for tensors with \(R > 3 \) dimensions in terms of the estimation accuracy, and it is very flexible in controlling the complexity-accuracy trade-off. Dividing the set of indices \(\{1, 2, \ldots, R\} \) into a \(P \)-dimensional subset \(\alpha^{(1)} = [\alpha_1, \alpha_2, \ldots, \alpha_P] \) and an \((R - P) \)-dimensional subset \(\alpha^{(2)} = [\alpha_{P+1}, \alpha_{P+2}, \ldots, \alpha_R] \) with \(1 \leq P < R \), SECSI-GU considers generalized unfoldings
\[
[\mathbf{X}]_{\alpha^{(1)}}^{\alpha^{(2)}} = (F_{\alpha_1} \odot \cdots \odot F_{\alpha_P}) \cdot (F_{\alpha_{P+1}} \odot \cdots \odot F_{\alpha_R})^T,
\]
where the first \(P \) indices are arranged into the rows and the rest \(R - P \) indices into the columns. Once the two Khatri-Rao products in (40), \(F_\alpha = F_{\alpha_1} \odot \cdots \odot F_{\alpha_P} \) and \(F_\beta = F_{\alpha_{P+1}} \odot \cdots \odot F_{\alpha_R} \), are obtained via SMDs in SECSI-GU [10], the least-squares Khatri-Rao factorization is employed to recover estimates of the loading matrices \(\mathbf{F}_r \) \((r = 1, 2, \ldots, R) \).

In light of the large number of SMDs each associated with one possible partitioning of the tensor modes, several heuristic selection criteria have been presented in [10] as examples to decide which SMDs to solve and how to select the final estimates of the loading matrices. It is thus important to predict the performance of SECSI-GU analytically so that the generalized unfolding is selected leading to the “best” solution, in the sense of minimal total rMSFE. In other words, an analytical performance evaluation of SECSI-GU is the key to its enhancement with a significantly reduced computational complexity. This is a crucial application of the performance analysis on the least-squares Khatri-Rao factorization presented in this paper, and hence our strong motivation for this work.

Inspired by the “first-order” perturbation analysis of the SECSI framework conducted in [20] for three-way tensors, \(\Delta F_\alpha \) and \(\Delta F_\beta \) will be first derived. Then the results shown in Section III will be used to finally obtain closed-form expressions of the rMSFE for all loading matrices, which completes the analytical performance analysis of SECSI-GU.

IV. SIMULATION RESULTS

To demonstrate the validity of our analytical performance evaluation of the least-squares Khatri-Rao factorization, we present comparisons between predicted estimation errors and empirical ones obtained via Monte Carlo simulations. The factor matrices \(\mathbf{F}_r \) \((r = 1, 2, \ldots, R) \) contain zero-mean uncorrelated Gaussian entries with unit variance, while elements of the perturbation \(\Delta \mathbf{F} \) are drawn similarly with variance \(\sigma^2 \). Accordingly, we define \(\text{SNR} = 1/\sigma^2 \).

Fig. 2 and 3 depict the results for the cases where \(R = 3 \), \(M_1 = M_2 = M_3 = 3 \), \(d = 2 \), and \(R = 4 \), \(M_1 = 3 \), \(M_2 = 4 \), \(M_3 = 5 \), \(M_4 = 3 \), and \(d = 2 \), respectively. In both cases, a good match between the predicted analytical and empirical results is observed, especially in the higher SNR regime.

V. CONCLUSIONS

We have presented a “first-order” perturbation analysis of the least-squares Khatri-Rao factorization. The procedures of the factorization entail the tensor representation of each column of the Khatri-Rao product and the use of the truncated HOSVD. Though this fact has allowed us to start with the existing perturbation analysis of SVD, in the meantime, it renders the subsequent derivation of the closed-form expressions of the rMSFE for all factor matrices a non-trivial task. To accomplish it, we have proposed to express the rMSFE in an elegant form and have devised convenient matrix-vector reformulations, transforming and decoupling the possibly complicated derivation into tractable and comprehensible procedures. The validity of the analytical performance analysis established in this paper has been corroborated by numerical simulations. In addition, its use in the analytical performance evaluation and a further enhancement of SECSI-GU has been highlighted. The concept of generalized unfoldings being more widely adopted in the computation and also the tracking of the CP decomposition of tensors with \(R > 3 \) will open up to an even larger number of applications of the least-squares Khatri-Rao factorization and its analytical performance analysis.

ACKNOWLEDGMENT

The authors acknowledge the financial support by the Carl-Zeiss-Foundation (http://carl-zeiss-stiftung.de/) and the German-Israeli Foundation (GIF), grant number I-1282-406.10/2014.
REFERENCES

