Abstract

This initial report describes the status of Task 2.3 (Interference and Utility Modelling). In the first part different interference models are discussed. Fundamental properties like convexity and monotonicity are explored and the problem of interference balancing is studied for a coupled multiuser system. Also, results on the multi-operator two-way relay channel are presented. In the second part of the deliverable, the resulting utility sets are discussed and a framework for joint scheduling and power control is derived. Also, game-theoretic strategies are studied. Finally, an approach based on wireless network coding is proposed.

Keywords

Contents

1 Introduction .. 1
 1.1 Structure of this Report 2
 1.2 Notations .. 3

2 Interference Models ... 5
 2.1 MIMO Interference Channel 6
 2.1.1 Interference Structure 6
 2.1.2 SINR Model ... 8
 2.2 Interference Calculus – An Axiomatic Approach 9
 2.2.1 Interference Functions 9
 2.2.2 Interference Balancing 11
 2.2.3 Exploiting Convexity and Monotonicity 12
 2.3 Analysis of Interference-Coupled Systems 13
 2.3.1 Strongly-Connected System 14
 2.3.2 Strict Monotonicity Implies a Unique Optimiser ... 15
 2.3.3 Power-Constrained Interference Balancing 16
 2.4 Multi-Operator Two-Way Relay Channel 18

3 Utility Models .. 23
 3.1 SINR-Based QoS Models and Regions 23
 3.2 Framework for Joint Scheduling and QoS Power Control .. 25
 3.2.1 QoS Power Control 25
 3.2.2 Joint Scheduling and QoS Power Control 27
 3.2.3 Mixed-Integer Linear-Programming Reformulation . 30
 3.2.4 Discussion ... 31
 3.3 Game-Theoretic Strategies 32
 3.3.1 System Model 33
 3.3.2 The Proposed Game-Theoretic Approach 34
 3.3.3 Applications of the Proposed Approach in a Multi-Agent Context .. 36
 3.4 Utility Model for WNC-Based Sharing 37
 3.4.1 WNC-Based Sharing 37
 3.4.2 Core Utility Model Input Elements 38
 3.4.3 Core Utility Performance Metric 39
 3.4.4 2-SRN HDF Example 40

4 Concluding Remarks .. 41
1 Introduction

SAPHYRE aims at demonstrating how spectrum/infrastructure sharing in wireless networks improves spectral efficiency, enhances coverage, increases user satisfaction, maintains Quality-of-Service (QoS) performance, leads to increased revenue for operators, and decreases capital and operating expenditures.

Interference is one key limiting factor for the development of strategies for resource and infrastructure sharing. Sharing is only possible if the level of mutual interference remains below a certain threshold. In order to develop efficient sharing strategies, we need interference models that provide the following degrees of freedom.

- Allocation of carrier frequencies/time slots
- Control and allocation of transmission powers
- Incorporation of coding schemes
- MIMO processing schemes
- Interoperability distance (spatial separation)

Interference determines how many users/terminals per area can be served at a certain data rate. Assigning each user a separate resource is not always an efficient way of organising the system. If the number of users is high then each user only gets a small fraction of the overall resource. Shortages occur when many users have high capacity requirements. Hence, the classical design paradigm of independent point-to-point communication links is gradually being replaced by a new network-centric point of view, where users interact and compete for the limited system resources.

MIMO offers another degree of freedom to avoid and mitigate interference. The multi-user case is quite different from the single-user case, because the users compete for the available resources. This typically means that there is no single optimum strategy. The performance of some users can be increased at the cost of decreasing the performance of other users. The chosen operating point is often a compromise between fairness and efficiency.

All these aspects should be taken into account when modelling the interactions between different users and operators within SAPHYRE.

This report aims at providing a basis for the research carried out in the following tasks of work packages WP2, WP3 and WP4.

- T2.1 Basic Limits for System Design
- T2.2 Applied Game Theory
1 Introduction

- T3.1 Applied Signal Processing
- T3.2 Network, Resource and Interference Aware Coding and Decoding
- T4.1 Joint PHY/MAC Optimisation and Self-Organisation

1.1 Structure of this Report

The report is organised in two parts. In the first part, an overview on interference models used in SAPHYRE will be presented. In the second part, QoS models will be studied.

First Part (Chapter 2)

Section 2.1 derives models for the MIMO interference channel. The interference channel is an important reference scenario for the work within SAPHYRE. It serves as a basic model for the interaction between two operators.

Section 2.2 presents a fundamental mathematical approach, which models interference as a function of the transmission powers (so-called interference functions). The behaviour of the resulting system is determined by the properties of the interference functions. Typical properties include (but are not limited to) different assumptions on convexity or concavity. This approach has the advantage of being general and being amenable to mathematical analysis.

SAPHYRE is aiming at a system-wide approach for sharing. A full-blown modelling of all interdependencies in such a system is usually prohibitive and can only be managed by means of numerical simulations. Thus, having an interference model with reduced complexity is an important prerequisite for achieving the ambitious project goals. By abstracting away from real-world system details, we are able to handle certain interference-coupled systems in an analytical manner. This is expected to provide valuable insight and intuition for the development of sharing algorithms and game-theoretic approaches.

Section 2.3 analyses the fundamental issue of interference coupling. The motivation for this theoretical work stems from the lack of understanding of the max-min SIR balancing problem, which is at the core of certain resource allocation problems. By deriving conditions for the existence and uniqueness of an optimiser we provide a basis for the development of iterative distributed algorithms for balancing resources in an interference-coupled network.

Section 2.4 addresses another important interference scenario, resulting from the use of relays shared by multiple operators (infrastructure and spectrum sharing).
Second Part (Chapter 3)

Section 3.1 is on SINR-based QoS models. Many performance measures can be expressed as monotonic functions of the SINR. This provides an abstract framework for the interference models (the “physical layer”) and higher layer utility models.

Section 3.2 derives a framework for joint scheduling and QoS power control. The aim is to allocate the resources non-orthogonally, in such a way that the interference between the operators is tolerable and that QoS is guaranteed.

Section 3.3 explores the link between game theory and interference/utility models.

Section 3.4 addresses a conceptually new approach for modelling and handling interference. Instead of treating interference as noise, which should be avoided, an information-theoretic approach is explored, where signals are combined at nodes in the network, and interference-cancellation is used.

1.2 Notations

Abbreviations

- 2-SRN: 2-Source Relay Network
- AF: Amplify and Forward
- AWGN: Additive White Gaussian Noise
- BC: Broadcast
- BS: Base Station
- CDMA: Code Division Multiple Access
- C-SI: Complementary Side-Information
- DF: Decode and Forward
- DoF: Degree of Freedom
- HDF: Hierarchical Decode and Forward
- HI: Hierarchical Information
- HXC: Hierarchical eXclusive Code
- IC: Interference Channel
- IFC: Interference
- IRC: Interference Relay Channel
- JDF: Joint DF
- LTE: Long Term Evolution
- LP: Linear Programming
- MAC: Medium Access Control
- MILP: Mixed-Integer Linear Programming
- MIMO: Multiple-Input Multiple-Output
- NC: Network Coding
- NP: Non-deterministic Polynomial-time
1 Introduction

OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
PHY Physical Layer
PLNC Physical Layer Network Coding
QoS Quality of Service
RRA Radio Resource Allocator
SINR Signal-to-Interference-plus-Noise Ratio
SIR Signal-to-Interference Ratio
SNR Signal-to-Noise Ratio
TD Time Division
TDD Time Division Duplex
UT User Terminal
WNC Wireless Network Coding
ZMCSCG Zero-Mean Circularly Symmetric Complex Gaussian

Mathematical Notations

\[\mathbb{C} \] set of complex numbers
\[\mathbb{R} \] set of real numbers
\[\mathbb{Z} \] set of integers
\[\mathbb{E}\{\cdot\} \] expectation
\[\mathbb{Tr}\{\cdot\} \] trace of matrix
\[\{\cdot\}^T \] transpose
\[\{\cdot\}^H \] Hermitian transpose
\[\{\cdot\}^+ \] Moore-Penrose pseudo inverse
\[\mathbb{I}_m \] \(m \times m \) identity matrix
\[\mathbf{0}_{m\times n} \] \(m \times n \) matrix with all zero elements
\[\| \cdot \| \] Euclidean norm of a vector
\[\mathbf{x} \geq \mathbf{y} \] component-wise inequality of two vectors \(\mathbf{x}, \mathbf{y} \)
\[\mathbf{x} \geq 0 \] component-wise greater or equal than zero
\[\| \cdot \|_F \] Frobenius norm of a matrix
2 Interference Models

The first part of the deliverable is strongly influenced by ideas originating from power control theory. In the existing literature, there is a great deal of research focusing on systems where the users are coupled by power cross-talk. The design philosophy behind this approach is based on the assumption that the transmission power used by one operator does interfere with the communication links of another operator (Figure 2.1). Thus, the basic idea is to avoid interference by cleverly allocating the resources or by reducing interference by signal processing, either at the transmitter or receiver. This should ideally be done under full exploitation of the available degrees of freedom listed at the beginning of the introduction.

Figure 2.1: Interference between operators must be avoided in order to facilitate resource sharing. This can be achieved by orthogonal allocation of resources (the conventional case). But the goal of this section is to derive interference model that are able to describe the more interesting case of interference-coupled networks. This enables the development of non-orthogonal sharing techniques that tolerate a certain amount of interference.

In order to assess the impact of interference, we consider the following interference models known from the literature:

1) Linear functions, based on the notion of a link gain matrix, which characterises the power coupling between users,

2) Interference resulting from adaptive beamforming or other receiver designs [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

3) Standard interference functions introduced in [12],

4) Homogeneous (scale-invariant) interference functions proposed in [5].
2 Interference Models

In recent work [13], it was shown that 2) and 3) are closely connected. In fact, every standard interference can be modelled by using the framework 3). Also, every linear interference function and interference resulting from adaptive interference mitigation strategies can be regarded as a special case of the model 3). Thus, the focus of this deliverable will be on the framework 3).

Later, in Section 3.4 we will take a different look at interference, which is motivated by recent ideas from network information theory. In this context, interference is not always considered as harmful. It is known from information theory that the optimal approach of dealing with strong interference is to cancel it, e.g., successive interference cancellation. Also, it is possible to combine signals at network nodes (Network Coding or Physical Layer Network Coding), which means that other signals are not necessarily treated as interference. This is a relatively new area of research which is still less well understood.

2.1 MIMO Interference Channel

In this section we discuss a special case of non-linear interference functions, resulting from the assumption of adaptive spatial filtering at the receiver. The framework can be extended to adaptive linear pre-processing at the transmitter.

The MIMO case is of special importance for SAPHYRE, since a large portion of the work will be focused on this scenario.

2.1.1 Interference Structure

Consider an uplink system with K communication links (users) $\mathcal{K} = \{1, 2, \ldots, K\}$ and an M-element antenna array at the receiver, as illustrated in Figure 2.2. The following discussion is confined to the case where each user transmits a single data stream. But the framework can easily be extended to the case where each user has multiple data streams (multiplexing). For example, data can be multiplexed over

![Figure 2.2: Spatial filtering at the receiver: superimposed signals are separated by a bank of spatial filters (beamformers).](image-url)
2.1 MIMO Interference Channel

different beams (spatial multiplexing) or carriers (OFDM). This adds additional degrees of freedom but it also complicates the optimisation of the communication links.

The K signals are modelled as random variables S_1, \ldots, S_K with $p_k = \mathbb{E}[|S_k|^2]$. Let t_l, with $\|t_l\|_2 = 1$, be a complex-valued vector whose length is equal to the number of transmit antennas of user l. The vector t_l maps the signal S_1 to the transmit antennas (Figure 2.3). The resulting signal $t_l S_1$ is transmitted over the propagation channel, which is characterised by a matrix H_l, which is assumed to be a random variable. User l is transmitting over an effective channel $h_l = H_l t_l$, which is random as well.

The matrix H_l contains the channel coefficients between all transmit and receive antennas of user l. The number of columns equals the number of transmit antennas and the number of rows equals the number of receive antennas. Such a multiplicative channel model can be used if the signal bandwidth is relatively small in comparison to the coherence bandwidth of the propagation channel. This is the case, for example, in an OFDM system with narrowband carriers.

At the receiver, the resulting output of the antennas is $h_l S_l$. The overall array output vector x is the superposition of the signals of all K users plus a random noise signal n.

$$x = \sum_{l \in K} h_l S_l + n.$$

Assuming M receive antennas, we have $x \in \mathbb{C}^M$. The transmitted signals S_1, \ldots, S_K can be recovered by a bank of linear filters $w_1, \ldots, w_K \in \mathbb{C}^M$ ("beamformers"). The output of the kth filter is

$$y_k = w_k^H \left(\sum_{l \in K} h_l S_l + n \right) = w_k^H h_k S_k + \sum_{l \in K; l \neq k} w_k^H h_l S_l + w_k^H n.$$

(2.1)

The desired signal is corrupted by interference and noise. An important performance measure is the signal-to-interference-plus-noise ratio (SINR). Many other performance measures, like bit error rate or capacity can be linked to the SINR.
2 Interference Models

2.1.2 SINR Model

The SINR of each user depends on the transmission powers \(p = [p_1, \ldots, p_K]^T \) and the noise variance \(\sigma_n^2 \), which can be collected in a single variable

\[
p = [p_1, \ldots, p_K, \sigma_n^2]^T. \tag{2.2}
\]

Now, we introduce \(R_k = \mathbb{E}[h_k h_k^H] \), which is the spatial covariance matrix of the channel of user \(k \). Exploiting that the signals are uncorrelated and \(\mathbb{E}[n n^H] = \sigma_n^2 I \), the SINR of user \(k \) is

\[
\text{SINR}_k(p, w_k) = \frac{\mathbb{E}[|w_k^H h_k s_k|^2]}{\mathbb{E}[|\sum_{l \neq k} w_l^H h_l s_l + w_k^H n|^2]} = \frac{p_k w_k^H R_k w_k}{w_k^H (\sum_{l \neq k} p_l R_l + \sigma_n^2 I) w_k}. \tag{2.3}
\]

The beamformer that maximizes the SINR can be found efficiently via eigenvalue decomposition [14]. The SINR is maximised by any \(w_k \) fulfilling

\[
\left(\sum_{l \neq k} p_l R_l + \sigma_n^2 I \right)^{-1} R_k \cdot w_k = \lambda_{\max} \cdot w_k \tag{2.4}
\]

where \(\lambda_{\max} \) is the maximum eigenvalue of the matrix \(\left(\sum_{l \neq k} p_l R_l + \sigma_n^2 I \right)^{-1} R_k \). The resulting interference-plus-noise power of user \(k \) can be written as

\[
I_k(p) = \max_{\|w_k\|_2 = 1} \text{SINR}_k(p, w_k) = \min_{\|w_k\|_2 = 1} \frac{p_k w_k^H R_k w_k}{\|w_k\|^2 \sigma_n^2} = \min_{\|w_k\|_2 = 1} \frac{p_k^T v_k}{\sum_{l \neq k} p_l R_l w_k} \tag{2.5}
\]

where \(v_k \) is a vector of coupling coefficients, whose \(l \)th element is defined as follows.

\[
[v_k]_l = \begin{cases}
\frac{w_k^H R_k w_k}{\|w_k\|^2} & 1 \leq l \leq K, \ l \neq k \\
\frac{w_k^H R_k w_k}{\|w_k\|^2} & l = K + 1, \\
0 & l = k.
\end{cases} \tag{2.6}
\]

The notation in (2.5) might appear unnecessarily complicated, but it turns out to be useful because it shows that the interference function (2.5) is a special case of a more general framework A1-A3, which will be discussed later in Section 2.2.

The vector \(v_k(w_k) \) determines how user \(k \) is interfered by other users. For any given \(p > 0 \), the beamformer \(w_k \) can adapt to the current interference situation. One possible way of choosing \(w_k \) is to enforce \(w_k^H R_k w_k = 0 \). This approach, known as zero-forcing, is suboptimal in the presence of power constraints since it neglects the noise enhancement factor \(\|w_k\|^2 \) in (2.5). Another strategy is to minimise \(\|w_k\|^2 \). This maximizes the signal-to-noise ratio (SNR) and is known as the spatial matched filter. Clearly, this approach has the disadvantage of not completely eliminating
the interference. The aforementioned SINR maximisation strategy (2.5) provides a compromise between eliminating interference and minimising $\|w_k\|^2$.

A special case occurs if the channels h_k are deterministic, then $R_k = h_kh_k^H$. Such a deterministic model is usually assumed if the channel h_k is constant within the time scale of interest, so that it can be estimated. Replacing R_k in (2.4) by $h_kh_k^H$, it can be observed that the SINR is maximised by scalar multiples of the vector

$$w_k^{\text{opt}} = \left(\sum_{l \neq k} p_l R_l + \sigma_n^2 I \right)^{-1} h_k.$$ \hspace{2cm} (2.7)

Plugging w_k^{opt} in the SINR (2.3), we obtain a closed-form expression of the interference.

$$I_k(p) = \frac{1}{h_k^H (\sigma_n^2 I + \sum_{l \neq k} p_l R_l)^{-1} h_k}. \hspace{2cm} (2.8)$$

Note, that the function (2.8) is concave in p. This is a consequence of (2.8) being a special case of (2.5). Recall that the minimum of linear functions is concave.

Within the project we will study how concavity can be exploited for the design of resource allocation algorithms.

2.2 Interference Calculus – An Axiomatic Approach

In this section we introduce an abstract mathematical interference model [5]. The framework is based on a few basic properties (axioms). This simplicity allows us to handle certain interference-coupled systems in an analytical manner. Such an analytical approach is highly desirable. Most interference-coupled systems can only be analysed by means of numerical simulations due to their inherent complexity. By using a clean-slate analytical approach, we can obtain valuable insight about the fundamental behaviour of interference-coupled systems. This might provide conceptually new long-term solutions, and a road map for the development of new resource allocation strategies.

2.2.1 Interference Functions

In this section we model the transmission powers of all L communication links in the system as an L-dimensional non-negative vector $p = [p_1, p_2, \ldots, p_L]^T \in \mathbb{R}_+^L$. Here, L is the overall number of resources in the system and p is the optimisation variable, that determines how transmission powers are allocated to the system resources. We also use the index set \mathcal{K} to denote the set of all communication link indices of the system.

Note, that the vector p can contain the powers of different operators. Also, this model can include the allocation of communication streams to different OFDM carriers or other orthogonal resources. Different links can belong to the same user, e.g. when data streams are multiplexed over frequencies, or spatial beams. Inactive links correspond to zero entries of the vector p.

The design goal is to choose \(p \geq 0 \) in such a way that excess interference between users is avoided. This approach is based on the assumption that we have \(L \) independent data streams that possibly interfere with each other.

In order to assess the power cross-talk between the data streams, we use the theory of interference functions \([12, 5]\). Let \(\mathcal{I} : \mathbb{R}_+^L \mapsto \mathbb{R}_+ \). We say that \(\mathcal{I} \) is a general interference function (or simply interference function) if the following axioms are fulfilled:

- **A1** (positivity) There exists an \(p > 0 \) such that \(\mathcal{I}(p) > 0 \),
- **A2** (scale invariance) \(\mathcal{I}(\alpha p) = \alpha \mathcal{I}(p) \) for all \(\alpha > 0 \),
- **A3** (monotonicity) \(\mathcal{I}(p) \geq \mathcal{I}(p') \) if \(p \geq p' \).

Throughout this deliverable, all vector inequalities are element-wise, i.e. \(p \geq p' \) means that \(p_l \geq p'_l \) for all elements \(l = 1, 2, \ldots, L \).

Property A3 is quite intuitive. If we increase the amount of expended power resources \(p \), then the resulting value \(\mathcal{I} \) will increase (or at least not decrease). An immediate example is power control, where \(p \) is a vector of transmission powers and \(\mathcal{I}(p) \) is the resulting interference at some other user. Hence, the name “interference function”.

The axioms A1, A2, A3 were proposed and studied in \([5]\), with extensions in \([15, 16, 17]\).

Interference functions were originally proposed for power control problems. Consider \(K \) communication links with powers \(p \in \mathbb{R}_+^K \). Here, \(K \) can stand for the number of users, but we can also model the case where each user has multiple links. Optimisation strategies are mostly based on the SIR or the SINR, depending on whether the model includes noise or not.

The case with no noise corresponds to a system without power constraints. If the transmission powers can be arbitrarily large, then the impact of noise is negligible. This case is interesting from a theoretical point of view, since it allows to focus on the impact of interference coupling. Noiseless scenarios have been addressed in the early literature, e.g. \([18]\), and later in the context of beamforming \([19]\). More recent extensions of these results can be found in \([17, 20, 21]\). Studying the noiseless case helps to obtain a thorough understanding of the underlying structure of power control problems. Two mathematical theories have been proved useful in this context. Firstly, the Perron-Frobenius theory of non-negative matrices. Secondly, the theory of interference functions \([12, 5]\).

In the following we will discuss a system with receiver noise power \(\sigma_n^2 > 0 \). In order to incorporate noise in the framework A1, A2, A3, we introduce an extended power resource vector

\[
p = \begin{bmatrix} p_n^2 \end{bmatrix} = \begin{bmatrix} p_1, \ldots, p_K, \sigma_n^2 \end{bmatrix}^T.
\]

Then \(\mathcal{I}(p) \) stands for interference plus noise, as in the previous example (2.5). While the impact of noise is evident in (2.5), it is not so obvious when defining
the interference via the axioms A1, A2, A3 alone. In order for the noise to have any impact, we need the following additional property.

A4 (strict monotonicity) \(I(p) > I(p') \) if \(p \geq p' \) and \(p_{K+1} > p'_{K+1} \).

If \(p_{K+1} > 0 \), then A4 ensures that \(I(p) > 0 \) for arbitrary \(p \geq 0 \). This can be easily shown by contradiction: Suppose that \(I(p) = 0 \), then for any \(\alpha \) with \(0 < \alpha < 1 \) we have

\[
0 = I(p) > I(\alpha p) = \alpha I(p),
\]

which would lead to the contradiction \(0 > \lim_{\alpha \to 0} \alpha I(p) = 0 \).

Axiom A4 connects the framework A1, A2, A3 with the framework of standard interference functions [12]. In [12] it was first proposed to model core properties of interference by an axiomatic approach. A function \(Y(p) \) is called a standard interference function if the following axioms are fulfilled.

Y1 (positivity) \(Y(p) > 0 \) for all \(p \in \mathbb{R}_+^K \),

Y2 (scalability) \(\alpha Y(p) > Y(\alpha p) \) for all \(\alpha > 1 \),

Y3 (monotonicity) \(Y(p) \geq Y(p') \) if \(p \geq p' \).

Properties of this framework were studied in [8, 22, 23]. The connection between standard interference functions and the axiomatic framework A1, A2, A3 was studied in [13]. It was shown that any standard interference function \(Y \) can be expressed by a general interference function. To be precise, a function \(Y \) is a standard interference function if and only if the function

\[
I_Y(p) := p_{K+1} \cdot Y\left(\frac{p_1}{p_{K+1}}, \ldots, \frac{p_K}{p_{K+1}}\right)
\]

fulfils A1, A2, A3 plus strict monotonicity A4. If we choose a constant value \(p_{K+1} = 1 \), then we simply have \(I_Y(p) = Y(p) \). That is, \(I_Y \) is a standard interference function with respect to the first \(K \) components of its argument.

The discussion of the previous section shows that the axiomatic framework A1, A2, A3 is also suitable for a broad class of SINR-based power control problems, with interference that can be modelled by standard interference functions. Examples are beamforming [1, 2, 3, 4, 5, 6, 7], CDMA [8, 9], base station assignment [10, 11] and robust designs [24, 25].

2.2.2 Interference Balancing

The interference functions introduced in Section 2.2.1 are very general, they are only determined by axioms A1 and A2. Axioms A1 is of minor importance, it only serves the purpose of ruling out the trivial case \(I(p) = 0 \) for all \(p \geq 0 \).

This model is indeed too general for the development of algorithmic solution. But it has been shown in first SAPHYRE publications [26, 27, 28] that this basic framework is useful for algorithm development if it is extended by additional properties.
2 Interference Models

One such property is the assumption of strict monotonicity with respect to noise, as discussed in Section 2.2.1. In this case, the framework is closely connected with standard interference functions, thus the results of [12] can be applied to all function falling within this case. In [12] a fixed point iteration was proposed for solving the problem of SINR-constrained power minimisation, also known as SINR balancing.

\[
\min_{p \in P} \sum_{l \in K} p_l \quad \text{s.t.} \quad \frac{p_k}{I_k(p)} \geq \gamma_k, \text{ for all } k \in K. \tag{2.11}
\]

Let’s assume that the power set \(P \) and the targets \(\gamma \) are such that the constraints are feasible. It was shown in [12] that problem (2.11) has a unique optimiser, which is the exact point where all constraints are fulfilled with equality. This is the fixed point obtained by the iteration

\[
p_{k}^{(n+1)} = \gamma_k I_k(p^{(n)}), \quad \forall k \in K, \quad p^{(0)} = 0. \tag{2.12}
\]

This iteration is component-wise monotonic convergent to the global optimiser \(p^* \). This was shown for standard interference functions in [12]. An alternative study based on the framework A1, A2, A3, A4 was presented in [5]. The iteration has linear convergence [22, 29], regardless of the actual choice of \(I_k \).

2.2.3 Exploiting Convexity and Monotonicity

Convexity is commonly considered as the dividing line between “easy” and “difficult” problems. Many examples can be found in the context of multiuser MIMO [30, 31, 3, 6, 7]. For example, equivalent convex reformulations exist for the well-known downlink beamforming problem, as observed in [3, 6, 7]. When investigating a problem, a common approach is to first look whether the problem is convex or not. Yates’ pioneering work on interference functions [12] has shown that it is not just convexity that matters. The above problem (2.12) can be solved efficiently without exploiting convexity, by merely relying on monotonicity and scalability properties.

This underlines the importance of exploiting all available structure of the problem at hand. Standard approaches from convex optimisation theory do not make sufficient use of the special structure offered by interference functions. On the other hand, Yates’ framework of standard interference functions [12] does not exploit convexity or concavity. As an example, consider the interference function (2.5), which results from optimum multi-antenna combining. It fulfils the axioms A1, A2, A3, and it is concave in addition. However, concavity is not exploited by the fixed point iteration (2.12).

In the remainder of this section we discuss how concavity (resp. convexity) and monotonicity can be exploited jointly. By only exploiting monotonicity and convexity, we show that the problem can be rewritten in an equivalent convex form.

To this end, assume a convex compact power set \(P \subseteq \mathbb{R}_+^K \). We rewrite (2.11) in an equivalent form

\[
\min_{p \in P} \sum_{l \in K} p_l \quad \text{s.t.} \quad \gamma_k I_k(p) - p_k \leq 0, \text{ for all } k \in K. \tag{2.13}
\]
2.3 Analysis of Interference-Coupled Systems

If I_k is convex, then (2.13) is a convex optimisation problem. Property A4 ensures the existence of a non-trivial solution, provided that the targets γ_k are feasible.

Next, consider the case where I_k is strictly monotonic and concave. An example is the interference (2.5) resulting from beamforming, with either individual power constraints or a total power constraint. Then, problem (2.13) is non-convex because inequality constraint functions are concave, but not convex.

This observation is in line with the literature on multiuser beamforming [3, 7, 6], where it was observed that the corresponding problem is non-convex. Fortunately, the beamforming problem could be solved by deriving equivalent convex reformulations, enabled by the specific interference structure resulting from beamforming receivers [3, 7, 6].

An interesting question is: does an equivalent convex reformulation also exist for the more general problem (2.13), which is only based on the axiomatic framework?

Indeed, if I_1, \ldots, I_K are concave and strictly monotonic interference functions, then problem (2.13) is equivalent to

$$\max_{p \in P} \sum_{l \in K} p_l \quad \text{s.t.} \quad p_k - \gamma_k I_k(p) \leq 0, \quad \forall k \in K.$$ (2.14)

Thanks to the monotonicity property of the interference functions, it can be shown that both problems (2.13) and (2.14) are solved by the same fixed point p^* [13]. In this sense they are equivalent. Problem (2.14) is convex and p^* can be found efficiently using standard algorithms from convex optimisation theory.

This result sheds some new light on the problem of multiuser beamforming, which is contained as a special case. It turns out that this problem has a generic convex reformulation (2.14). This insight possibly helps to better understand the convex reformulations observed in the beamforming literature [3, 7].

It should be emphasised that the reformulation (2.14) holds for arbitrary concave standard interference functions, not just the beamforming case. This also includes other receive strategies that aim at optimising the SINR. Examples are CDMA [8, 9] or base station assignment [10, 11]. Also, it is easy to incorporate additional constraints on the receivers, like the shaping constraints studied in [6].

2.3 Analysis of Interference-Coupled Systems

It is expected that the following min-max problem will play a fundamental role for the understanding of interference-coupled systems in SAPHYRE, and also for the development of distributed resource balancing algorithms.

$$C(\gamma) = \inf_{p \in R^L_+} \max_{1 \leq k \leq L} \frac{\gamma_k I_k(p)}{p_k}.$$ (2.15)

Here, I_1, \ldots, I_K are interference functions defined in Section 2.2.1 and γ is a vector of SIR targets.
2 Interference Models

The function \(C(\gamma) \) is an indicator for the “congestion” of the system. If \(C(\gamma) \leq 1 \), then the SIR values \(\gamma \) can be jointly supported.

Within SAPHYRE we have studied problem (2.15). The results have been published in [32]. The main outcome of this research is a characterisation of conditions for the existence and uniqueness of an optimiser of problem (2.15).

This work has a very practical background. Existence and uniqueness of an optimiser is an important prerequisite for the convergence of algorithms. Thus, the results provide a basis for other work packages, where algorithms are developed. In particular, it is expected to be useful for the development of distributed fixed point iteration, similar to the approach of Yates [12].

2.3.1 Strongly-Connected System

Some basic properties of problem (2.15) were already studied in [5]. Here, we extend these results by assuming that the links are “strongly connected”. This is defined by the following properties.

In order to model whether an interference function depends on some resource or not, we introduce the coupling matrix \(A_I \), which characterises the interference coupling between the users. The asymptotic coupling matrix \(A_I \) is defined as follows. Let \(e_l \) be the all-zero vector with the \(l \)-th component set to one. Then,

\[
[A_I]_{kl} = \begin{cases}
1 & \text{if there exists a } p > 0 \text{ such that } \\
\lim_{\delta \to \infty} I_k(p + \delta e_l) = +\infty, \\
0 & \text{otherwise.}
\end{cases}
\] (2.16)

If there is one \(p \) that fulfils the condition in (2.16), then this condition is fulfilled for all \(p > 0 \).

We assume that \(A_I \) is irreducible. A non-negative \(L \times L \) matrix \(A_I \) is said to be irreducible if and only if its directed graph \(G(A_I) \) is strongly connected. This is illustrated by the following example.

\[
A_I = \begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{bmatrix}
\]

\[G(A_I): \]

The graph \(G(A_I) \) consists of \(L = 4 \) nodes \(N_1, \ldots, N_L \). A pair of nodes \((N_i, N_j)\) is connected by a directed edge if \([A_I]_{ij} > 0\). A graph is called strongly connected if for each pair of nodes \((N_i, N_j)\) there is a sequence of directed edges leading from \(N_i \) to \(N_j \).

The dependency set of link \(k \) is

\[L_k = \{ l \in [1, 2, \ldots, K] : [A_I]_{kl} = 1 \} . \] (2.17)

The set \(L_k \) is non-empty. Because of the assumed irreducibility there is at least one non-zero entry in each row and column.
2.3 Analysis of Interference-Coupled Systems

$I_k(p)$ is said to be strictly positive if for any $p \geq 0$ with $p_l > 0$ for some $l \in L_k$ we have $I_k(p) > 0$.

2.1 Definition. A system consisting of L interference functions is said to be strongly connected if the functions are strictly positive and A_I is irreducible.

It was shown in [5, Thm. 2.7] that there always exists a $p^* \geq 0$, such that

$$p^*_k \cdot C(\gamma) = \gamma_k I_k(p^*), \quad 1 \leq k \leq K.$$ \(2.18\)

This result holds for all interference functions fulfilling A1-A3.

Under the assumption of a strongly connected system, have the following result [32].

2.2 Theorem. If the system is strongly connected then we have $C(\gamma) > 0$ and any $p^* \geq 0$ fulfilling (2.18) is strictly positive, i.e. $p^* > 0$.

Based on Theorem 2.2 we can derive the following result [32], which provides a sufficient condition for existence of an optimiser.

2.3 Corollary. If the system is strongly connected then the min-max problem (2.15) has a solution $p^* > 0$.

Thus far, we have shown the existence of a solution $p^* > 0$ but not uniqueness. There possibly are several solutions. Uniqueness will be discussed in the next section under the additional assumption of strict monotonicity.

2.3.2 Strict Monotonicity Implies a Unique Optimiser

We begin with a definition.

2.4 Definition (strict monotonicity). $I_k(p)$ is said to be strictly monotonic if for arbitrary $p^{(1)}$, $p^{(2)}$, the inequality $p^{(1)} \geq p^{(2)}$, with $p^{(1)}_l > p^{(2)}_l$ for some $l \in L_k$, implies $I_k(p^{(1)}) > I_k(p^{(2)})$.

This leads to the next main result [32].

2.5 Theorem. If the interference functions are strongly connected and strictly monotonic, then the set of equations (2.18) has a unique solution $p^* > 0$, up to scalar multiples.

The next result connects equation (2.18) and the balancing problem (2.15).

2.6 Theorem. If the interference functions are strongly connected and strictly monotonic, then the SIR balancing problem (2.15) has an optimiser $p^* > 0$, unique up to a scalar multiple, that balances all the ratios SIR_k/γ_k at the level $C(\gamma)$, i.e.

$$C(\gamma) = \min_{p \in \mathbb{R}^L_+} \left(\max_{1 \leq l \leq L} \frac{\gamma_l I_l(p)}{p_l} \right)$$

$$= \frac{\gamma_1 I_1(p^*)}{p^*_1} = \ldots = \frac{\gamma_L I_L(p^*)}{p^*_L}.$$ \(2.19\)

These results are very general, and thus far we haven’t made any assumption on power constraints. This will be discussed in the next section.
2 Interference Models

2.3.3 Power-Constrained Interference Balancing

In this section we show how the results can be extended to include power constraints, which is important for most practical interference scenarios.

Thus far, we have analysed the SIR, which is invariant with respect to a scaling, i.e. $\text{SIR}_i(\alpha \mathbf{p}) = \text{SIR}_i(\mathbf{p})$ for all $\alpha > 0$. Thus, constraining the norm of \mathbf{p} has no effect. This is typical for a system with no noise. In order to model power-constrained system with noise, the framework of standard interference functions is often used (cf. Section 2.2.1, page 11).

In the following we demonstrate that the power-constrained SINR balancing problem (2.11) can be understood as a special case of problem (2.15). Our approach is based on the introduction of an auxiliary interference function, which ensures that certain power constraints are fulfilled.

In order for a power constraint to have any effect, it is necessary to introduce noise. In this section we consider K user powers p_1, \ldots, p_K and a noise power σ_n^2. These powers are stacked in the extended power vector $\mathbf{p} \in \mathbb{R}_{++}^{K+1}$, which was already introduced and discussed in (2.9). In the following we normalise $\sigma_n^2 = 1$.

Consider a system with a total power constraint $\sum_{1 \leq k \leq K} p_k \leq P_{\text{max}}$, for some $P_{\text{max}} > 0$. In order to enforce this power constraint, we introduce an auxiliary interference function

$$I_{K+1}(\mathbf{p}) = \frac{1}{P_{\text{max}}} \sum_{k=1}^{K} \gamma_k I_k(\mathbf{p}).$$

(2.21)

It can be verified that I_{K+1} fulfils the axioms A1-A3, since the sum of interference functions is an interference function again.

Let \mathbf{G} be the dependency matrix of the first K components. We assume that every user causes interference to at least one other user, thus each column of the matrix \mathbf{G} has at least one non-zero entry. Also, every $I_k(\mathbf{p})$ depends on the noise component. Thus, the $K \times K+1$ asymptotic coupling matrix of the first K interference functions is $[\mathbf{G} \ 1]$, where the last column models the dependency on the noise.

The interference function I_{K+1} depends on all powers, because of definition (2.21). Thus, the overall system coupling matrix becomes

$$\mathbf{A}_I = \begin{bmatrix} \mathbf{G} & 1 \\ 1^T & 1 \end{bmatrix}.$$

(2.22)

The matrix \mathbf{A}_I is irreducible because its last row and column are positive.

We further assume that the interference functions I_1, \ldots, I_K are strictly monotonic. Since $\sigma_n^2 = 1$ is constant, we know that they are also strictly positive. This is a consequence of the properties A1-A3 and strict monotonicity, as observed in [5]. The function I_{K+1} is the sum of all other interference functions, thus positivity and strict monotonicity hold.

The interference functions $I_1, \ldots, I_K, I_{K+1}$ constitute a fully connected, strictly monotonic system. The $K+1$ dimensional SIR balancing problem can be written
2.3 Analysis of Interference-Coupled Systems

as

\[
\min_{p \in \mathcal{P}} \left(\max_{1 \leq k \leq K+1} \frac{\gamma_k I_k(p)}{p_k} \right). \tag{2.23}
\]

Here, we optimise over the set

\[
\mathcal{P} = \left\{ p \in \mathbb{R}^{K+1} : p_{K+1} = 1 \right\}. \tag{2.24}
\]

As a consequence, \(p \) always fulfils \(p_{K+1} = 1 \). Recall that the SIR is not affected by a simultaneous scaling of transmission powers and noise, so we could equivalently optimise over the unconstrained set \(\mathbb{R}^{K+1} \). But the problem formulation (2.23) has the advantage of having a defined noise level.

The additional parameter \(\gamma_{K+1} \) can be set to one. Other values will just scale the available power budget.

From Theorem 2.6 we know that problem (2.23) has a unique optimiser \(p^* > 0 \) such that

\[
\frac{p_1^*}{\gamma_1 I_1(p^*)} = \cdots = \frac{p_K^*}{\gamma_K I_K(p^*)} = \frac{P_{\text{max}}}{\sum_{k=1}^K \gamma_k I_k(p^*)}. \tag{2.25}
\]

Taking the sum of the first \(K \) powers, we obtain the following identity.

\[
\sum_{k=1}^K p_k^* = \sum_{k=1}^K \gamma_k I_k(p^*) \cdot \frac{P_{\text{max}}}{\sum_{k=1}^K \gamma_k I_k(p^*)} = P_{\text{max}}. \tag{2.26}
\]

Hence, all user SIRs are balanced and the sum power constraint is fulfilled with equality.

Next, consider the functions \(Y_k(p) = I_k(p) \) for all \(k = 1, 2, \ldots, K \). For constant noise \(I_{K+1} \), the function \(Y_k \) is a standard interference function [12], characterised by monotonicity and scalability, i.e. \(Y(\alpha p) < \alpha Y(p) \). Moreover, any standard interference function can be written as \(I_k(p) \) with \(p_{K+1} = 1 \). Thus, both frameworks can be used interchangeably for modelling interference-noise in communication system. For a detailed comparison between the axiomatic frameworks A1-A3 and the framework of standard interference functions, the reader is referred to [13].

With standard interference functions, the power-constrained SINR balancing problem can be written as follows.

\[
\max_{p > 0 : \sum_{k=1}^K p_k \leq P_{\text{max}}} \min_{k \in K} \frac{p_k}{\gamma_k Y_k(p)}. \tag{2.27}
\]

Equivalently, we can focus on the problem

\[
C(\gamma, P_{\text{max}}) = \min_{p > 0 : \sum_{k=1}^K p_k \leq P_{\text{max}}} \max_{k \in K} \frac{\gamma_k Y_k(p)}{p_k}. \tag{2.28}
\]

Similar as in [4], we can show that
2 Interference Models

- Problem (2.28) has a unique optimiser $p^* > 0$ that balances all SINR at a level $C(\gamma, P_{\text{max}}) > 0$, i.e.

$$C(\gamma, P_{\text{max}}) = \gamma k Y_k(p^*) \frac{p_k^*}{p_k^*} \text{ for all } k = 1, 2, \ldots, K$$ \hfill (2.29)

- At the optimum, the power constraint is fulfilled with equality, i.e. $\sum_{k=1}^{K} p_k^* = P_{\text{max}}$.

- $C(\gamma, P_{\text{max}})$ is strictly monotonic decreasing in P_{max}.

From the latter property it follows that there cannot be another balanced level. If we find powers $p^* > 0$ achieving a balanced level and if this solution fulfils $\sum_{k=1}^{K} p_k^* = P_{\text{max}}$, then this is the unique optimiser of the SINR balancing problem (2.28).

Hence, the solution (2.25) obtained by the SIR balancing approach with an auxiliary interference function yields the unique global optimum of the SINR balancing problem.

These results contribute to a better understanding of interference balancing in multiuser systems. In Section 2.3.3 it has been demonstrated that the interference model A1,A2,A3 can be applied to practical scenarios with power constraint, so it provides an alternative approach to the well-known framework of standard interference functions.

One could argue that standard interference functions are an established model, so the value of using a different model A1,A2,A3 might not be clear at first sight. But it has been shown in a series of recent publications [5, 15, 16, 17] that the framework A1,A2,A3 has an interesting structure which is amenable to mathematical analysis. In a sense, it can be seen as an extension of the Perron-Frobenius theory, which has proved to be useful in many areas of research that involve coupled systems.

2.4 Multi-Operator Two-Way Relay Channel

Recently, relays have received an increased interest due to their potential abilities of reducing the deployment cost, enhancing the network capacity, mitigating shadowing effects and so on. Prior work has focused on conventional one-way relaying where transmission takes four time slots [33], [34], [35]. However, it is known that the two-way relaying technique can compensate the spectral efficiency loss in one-way relaying due to the half-duplex constraint of the relay and therefore uses the radio resources in a particular efficient manner [36]. Many references on the two-way relaying protocol can be found in [37], [38], [39], [40]. However, there is little work towards extending the two-way relaying technique to the resource sharing scenarios that are of interest to SAPHYRE. This has sparked our interests in exploiting the potential advantages of the relay sharing between different operators. Thus, we introduce a relay sharing model, namely, the multi-operator two-way relaying scenario.
where the relay and the spectrum are shared between different operators. Moreover, we prefer the amplify and forward (AF) relays which retransmit an amplified version of their received signal for this scenario since these cause less transmission delays and require lower hardware complexity than the decode and forward (DF) relays. In our work, we will study the interference model of this scenario and develop new resource allocation algorithms. The ultimate goal is to show whether the users and the operators could gain from this relay sharing model.

The scenario under investigation is shown in Figure 2.4. Pairs of user terminals (UT) belonging to different operators would like to communicate. However, due to the poor quality of the direct channel between the users, they can only communicate with each other with the help of a relay. Assume that we have L operators. Each user has single antenna. The relay is equipped with M_R antennas. We assume that the channel is flat fading. The channel between the kth user of the ℓth operator and the relay is denoted by $h_{k}^{(\ell)} \in \mathbb{C}^{M_R}$ ($k \in \{1, 2\}$ for users, $\ell \in \{1, \ldots, L\}$ for operators).

The two-way AF relaying protocol consists of two transmission phases: in the first phase, which could be also called multiple access (MAC) phase, all the user terminals transmit their data simultaneously to the relay. Let the kth user of the ℓth operator transmit the data symbol $d_{k}^{(\ell)}$ with the transmit power constraint $\mathbb{E}\left\{|d_{k}^{(\ell)}|^2\right\} \leq p_{k}^{(\ell)}$.

The received signal vector at the relay is then

$$ r = \sum_{\ell=1}^{L} \sum_{k=1}^{2} h_{k}^{(\ell)} d_{k}^{(\ell)} + n_{R} \in \mathbb{C}^{M_R} \quad (2.30) $$

Figure 2.4: Multi-operator two-way relaying system model. The k-th terminal belonging to the ℓ-th operator has single antenna and the relay station is equipped with M_R antennas.
where \(\mathbf{n}_R \in \mathbb{C}^{M_R} \) is zero-mean circularly symmetric complex Gaussian (ZMCSCG) noise and \(\mathbb{E}\{\mathbf{n}_R\mathbf{n}_R^\dagger\} = \sigma_R^2 \mathbf{I}_{M_R} \).

In the second phase, which could be also called broadcasting (BC) phase, the relay amplifies the received signal and then forwards it to all the UTs. The signal transmitted by the relay can be expressed as

\[
\bar{\mathbf{r}} = \gamma_0 \cdot \mathbf{G} \cdot \mathbf{r}.
\]

(2.31)

where \(\mathbf{G} \in \mathbb{C}^{M_R \times M_R} \) is the relay amplification matrix. The parameter \(\gamma_0 \in \mathbb{R}^+ \) is chosen such that the transmit power constraint \(p_R \) at the relay is fulfilled, i.e.

\[
\mathbb{E}\{\text{Tr}\{\bar{\mathbf{r}}\bar{\mathbf{r}}^\dagger\}\} = \text{Tr}\left\{\gamma_0^2 \cdot \mathbf{G} \left(\sum_{\ell=1}^L \sum_{k=1}^2 p_k^{(\ell)} \mathbf{h}_k^{(\ell)}\mathbf{h}_k^{(\ell)\dagger} + \sigma_R^2 \mathbf{I}_{M_R} \right) \mathbf{G}^\dagger \right\} = p_R.
\]

(2.32)

For notational simplicity, we assume that the reciprocity assumption between the first- and second- phase channels is valid. This assumption is fulfilled in a TDD system if identical RF chains are applied. Then the received scalar \(y_k^{(\ell)} \) at the \(k \)th user of the \(\ell \)th operator can be written as

\[
y_k^{(\ell)} = \mathbf{h}_k^{(\ell)\dagger} \bar{\mathbf{r}} + n_k^{(\ell)}
= \underbrace{\gamma_0 \mathbf{h}_k^{(\ell)\dagger} \mathbf{G} \mathbf{d}_k^{(\ell)}}_{\text{useful signal}} + \underbrace{\gamma_0 \mathbf{h}_k^{(\ell)\dagger} \mathbf{G} \mathbf{n}_k^{(\ell)}}_{\text{self-interference}}
+ \underbrace{\sum_{\ell=1}^L \sum_{k=1}^2 \gamma_0 \mathbf{h}_k^{(\ell)\dagger} \mathbf{G} \mathbf{d}_k^{(\ell)}}_{\text{interference from other operators}}
+ \underbrace{\gamma_0 \mathbf{h}_k^{(\ell)\dagger} \mathbf{G} \mathbf{n}_k^{(\ell)} + n_k^{(\ell)}}_{\text{effective noise}}
\]

(2.33)

where \(n_k^{(\ell)} \) is ZMCSCG noise and \(\mathbb{E}\{n_k^{(\ell)}n_k^{(\ell)\dagger}\} = \sigma_k^{(\ell)2} \).

If the channel knowledge is perfectly known at user terminals, the self-interference term in (2.33) can be subtracted. Then the SINR of the \(k \)th user of the \(\ell \)th operator is

\[
\text{SINR}_k^{(\ell)} = \frac{\mathbb{E}\left\{\left|\gamma_0 \mathbf{h}_k^{(\ell)\dagger} \mathbf{G} \mathbf{d}_k^{(\ell)}\right|^2\right\}}{\mathbb{E}\left\{\sum_{\ell=1}^L \sum_{k=1}^2 \gamma_0 \mathbf{h}_k^{(\ell)\dagger} \mathbf{G} \mathbf{d}_k^{(\ell)} + \gamma_0 \mathbf{h}_k^{(\ell)\dagger} \mathbf{G} \mathbf{n}_k^{(\ell)} + n_k^{(\ell)}\right\}^2}
\]

(2.34)

As seen from (2.34), the SINR of each user does not only depend on the transmit power \(p_k^{(\ell)} \) and noise power \(\sigma_k^{(\ell)2} \) at user terminals but also depends on the transmit
power p_R and noise variance σ_R^2 at the relay. Furthermore, the common relay amplification matrix G couples the interference function of all the users, which makes the optimisation problem more complex. For example, the overall sum rate of the system could be written as

$$R_{\text{sum}} = \frac{1}{2} \sum_{\ell=1}^{L} \sum_{k=1}^{2} \log_2(1 + \text{SINR}_k^{(\ell)})$$

(2.35)

where the factor $1/2$ is due to the two channel uses (half-duplex mode). The optimisation problem of finding the relay amplification matrix structure, which maximizes (2.35) subject to transmit power constraints at the relay, is non-convex. To avoid a non-tractable optimisation problem, we resort to sub-optimal solutions, which ensure that the interference from other operators is eliminated [39]. It is found that even with the sub-optimal solutions we can obtain the sharing gain in terms of system sum rate compared to the case where the relay is accessed exclusively by each operator. More details on these sub-optimal algorithms will be presented in the SAPHYRE Deliverable D3.1a.

Within the rest of the project, we will further look for the optimal structure of G which would maximise the system sum rate.
2 Interference Models
3 Utility Models

In the following we discuss utility models. The results partly depend on the previous section, where interference models were derived.

We start be reviewing SINR-based utility models. Then we discuss how this can be exploited for a framework for joint scheduling and power control. We end with the introduction of a model for WNC based sharing in Section 3.4.

3.1 SINR-Based QoS Models and Regions

In this section, QoS stands for an arbitrary performance measure, which depends on the SINR by a strictly monotone and continuous function ϕ defined on \mathbb{R}_+. The QoS of user k is

$$ q_k(p) = \phi_k(\text{SINR}_k(p)) , \quad k \in \mathcal{K}. $$

(3.1)

Many performance measures depend on the SINR in this way. Examples are SINR, logarithmic SINR, MMSE, bit error rate, etc.

Let γ_k be the inverse function of ϕ_k, then $\gamma_k(q_k)$ is the minimum SINR level needed by the kth user to satisfy some QoS target q_k. Assume that the QoS is defined on some domain Q and the K-dimensional domain is denoted by Q^K. Let $q \in Q^K$ be a vector of QoS values, then the corresponding SINR vector is

$$ \gamma(q) = [\gamma_1(q_1), \ldots, \gamma_K(q_K)]^T. $$

(3.2)

That is, q can be achieved if and only if the SINR targets $\gamma := \gamma(q)$ can be achieved. Thus, in many properties of the QoS region, like Pareto optimality, have direct correspondence in the SINR region. Hence, the importance of thoroughly understanding the SINR region.

We say that γ is feasible if for any $\epsilon > 0$ there exists a $p_\epsilon > 0$ such that

$$ \text{SINR}_k(p_\epsilon) \geq \gamma_k - \epsilon, \quad \forall k \in \mathcal{K}. $$

(3.3)

If this is fulfilled for $\epsilon = 0$, then the targets γ can actually be attained, otherwise they are achieved in an asymptotic sense. For practical scenarios, the former case is mostly ensured by noise and power constraints. A necessary and sufficient condition for feasibility is $C(\gamma) \leq 1$, where $C(\gamma)$ is defined by (2.15). Thus, the SINR region is

$$ \mathcal{S} = \{\gamma \geq 0 : C(\gamma) \leq 1\}. $$

(3.4)

This definition of an SINR (resp. QoS) region is quite general and not tied to any particular channel or interference mitigation strategy. The definition (3.4) contains other known SINR regions as special cases.
The indicator function $C(\gamma)$ fulfils the axioms A1, A2, A3. Thus, S is a subset of an interference function. This has some interesting consequences: Certain properties of S directly correspond with the properties of $C(\gamma)$. By analysing $C(\gamma)$ we obtain valuable information about the structure of QoS regions [15].

For example, the property A3 translates into comprehensiveness. A set $V \subset R^K_{++}$ (strictly positive reals) is said to be upward-comprehensive if for all $w \in V$ and $w' \in R^K_{++}$, the inequality $w' \geq w$ implies $w' \in V$. If the inequality is reversed, then V is said to be downward-comprehensive. In the context of game theory, comprehensiveness is interpreted as free disposability of utility [41]. If a user can achieve a certain utility, then it can freely dispose of all utilities below.

It was shown in [15] that any set from R^K_{++} is closed downward-comprehensive if and only if it is a sublevel set of an interference function. Likewise, it is closed upward-comprehensive if and only if it is a superlevel set of an interference function. This shows a one-to-one correspondence between interference functions and comprehensive sets. Moreover, it was shown that such a comprehensive set is convex if and only if the corresponding interference function is convex.

Convexity of the QoS region is a desirable property which often facilitates efficient algorithmic solutions. However, many QoS regions are comprehensive but not convex. A standard approach is to “convexify” the utility set by randomisation techniques, e.g. [42, 43], or by resource sharing. However, such a strategy may not always be possible or relevant in all situations.

Another, more elegant way is to exploit “hidden convexity”, if available. Sometimes, a given problem is not convex but there exists an equivalent convex problem formulation. That is, the original non-convex problem can be solved indirectly by solving the equivalent problem instead.

An example is logarithmic convexity (log-convexity). A function $f(x)$ is said to be log-convex on its domain if $\log f(x)$ is convex. Log-convexity was already exploited in the context of power control [44, 45, 46, 47, 48, 49, 50]. Assume that $\text{SINR}_k(p) = p_k/\mathcal{I}_k(p)$, and $\mathcal{I}_1, \ldots, \mathcal{I}_K$ are log-convex interference functions after a change of variable $s = \log p$. That is, $\mathcal{I}(\exp(s))$ is log-convex with respect to s. This is fulfilled, for example, for all linear interference functions and also for certain worst-case designs [17].

Under the assumption of SINRs defined by log-convex interference functions, the resulting indicator function $C(\gamma)$ itself is a log-convex interference function after another change of variable $q_k = \log \gamma_k$ [17]. That is, $C(\exp(q))$ is log-convex with respect to $q = (q_1, \ldots, q_K)$. Every log-convex function is convex, and a sub-level set of a convex function is convex. Thus, the set S is convex on a logarithmic scale. This can be exploited for the development of algorithms that operate on the boundary of the region [48].
3.2 Framework for Joint Scheduling and QoS Power Control

In this section, a framework is proposed for joint optimization of bandwidth and transmit power. A wireless network is considered comprising \(K \) mutually-interfering links and \(N<K \) orthogonal resources (time slots or frequency channels). The spectrum sharing scenario that is of interest to SAPHYRE is when the links belong to (at least) two operators, but they are served in the same spectrum chunk. The definition of service is that a predetermined QoS target is met for each link. A joint power and resource allocation problem is formulated as a constrained optimization problem. Specifically, the proposed formulation is a mixed-integer linear-programming (MILP) problem in standard form. The joint problem of interest (scheduling and QoS power control) is NP-hard. However, the proposed framework, due to its linearity, enables solving the problem exactly and relatively efficiently for the vast majority of instances, using off-the-shelf algorithms.

The motivation for this work is the increased sophistication of wireless communication systems envisioned for the future. For example, we witness a number of emerging applications, such as streaming video and interactive gaming, which bring high requirements on the QoS. This puts additional demands on the resource allocation algorithms used in the network. The SAPHYRE vision is that links that belong to different infrastructure (operators) may coexist in the same spectrum. Collectively, the envisioned technology that will be able to offer such coexistence is called spectrum sharing. Spectrum sharing will require a wide range of new enabling technology and algorithms, which includes, among others, algorithms for optimally solving scheduling and power control problems.

3.2.1 QoS Power Control

As discussed in Section 2.2, the fundamental aspects of power allocation in wireless networks can be understood by considering a generic model comprising \(K \) transmitter-receiver pairs. The transmissions on the \(K \) links under study take place concurrently in the same channel. Due to the broadcast nature of the wireless medium there is coupling between the transmitter-receiver pairs. The effect is that each receiver listens to a superposition of the desired signal and of all the other \(K-1 \) transmitted signals, which constitute interference. The communication quality of the \(k \)th link can be quantified via the received SINR

\[
\text{SINR}_k = \frac{G_{kk}p_k}{\sum_{\ell \neq k} G_{\ell k}p_{\ell} + \sigma_n^2}. \tag{3.5}
\]

In (3.5), \(p_k \) is the transmit power used on the \(k \)th link, \(G_{\ell k} \) is the gain of the channel between the \(\ell \)th transmitter and the \(k \)th receiver, and \(\sigma_n^2 \) is the variance of the AWGN noise. The channel gains include the effects of propagation loss, shadowing and fading.

The receivers are assumed to treat the interference as noise. Hence, the maximum achievable rate, that a link can support, is dictated by the SINR. In practice, a rate
requirement, that is imposed by an application, can be directly translated to an SINR requirement, for a given modulation/coding scheme and a given target bit-error rate. Thus, QoS can be guaranteed to the kth link when the SINR$_k$ exceeds a predetermined threshold γ_k. In order to ensure this condition, the physical-layer protocol may adjust the transmit power p_k up to a bound P, which is typically determined by regulatory and/or hardware constraints. However, while boosting p_k increases SINR$_k$, it reduces at the same time SINR$_\ell$ $\forall \ell \neq k$. Hence, the transmission powers need to be determined jointly.

The SINR-constrained power control problem (2.11) is rewritten as

$$\min_{\{p_k \in [0, P]\}_{k=1}^{K}} \sum_{k=1}^{K} p_k$$

s.t. $\text{SINR}_k \geq \gamma_k \quad \forall k \in \mathcal{K}$,

(3.6) (3.7)

where SINR$_k$ is defined in (3.5) and $\mathcal{K} \triangleq \{1, \ldots, K\}$ is the set of all direct links. The objective function in (3.6) strives to minimize the total transmission power subject to a QoS constraint (3.7) for each link. This minimizes the overall interference emitted by the network, and at the same time prolongs the operating lifetime of energy-starved transmitters.

Problem (3.6)–(3.7) has been extensively studied in the past, e.g. [5, 51]. From an optimization viewpoint, it is a convex linear programming (LP) problem. Hence, when an optimum solution exists, it can be found very efficiently. The solution is found by a central controller which knows all the channel gains $\{G_{\ell k}\}$ and QoS requirements $\{\gamma_k\}$. Owing to the linearity of the problem, even in the absence of a central controller efficient algorithms have been proposed to find the optimum solution in a distributed manner [52, 12].

However, problem (3.6)–(3.7) may be infeasible. This typically happens when the requested SINR thresholds $\{\gamma_k\}$ are large or when the coupling channel gains $\{G_{\ell k}\}_{\ell \neq k}$ are large relative to the corresponding direct link gains $\{G_{kk}\}$. If the QoS constraints for all K links cannot be simultaneously satisfied by power control, the different links need to be scheduled to more than one orthogonal degrees of freedom (DoF) (time slots or frequency channels). Algorithms available to date take such access-control decisions based mostly on the channel gains and disregard valuable insights gained by the attempt to solve the QoS power control problem in the physical layer. Significant improvements are expected by cross-layer approaches to the scheduling and power control problem. Previous, related results in this direction include the joint power and admission control problems considered in [53, 54]. Therein, modifications to the distributed power control algorithm of [52] are proposed to determine whether another link can be served in the same DoF without yielding the problem infeasible.

1Some authors refer to this problem as scheduling. Herein, the term scheduling is reserved for the explicit allocation of links to DoF.
3.2 Framework for Joint Scheduling and QoS Power Control

A different, more disciplined, approach is proposed in [55, 56, 57]. This line of work follows a common methodology. Initially, the two-layer problem of interest is formulated as a joint optimization problem, with the introduction of auxiliary binary variables that model the scheduling decisions. The joint problem is inherently NP-hard and in a form that cannot be directly solved. In a second step, the joint optimization problem is relaxed to its convex counterpart. Finally, heuristic algorithms are proposed which iteratively solve different instances of this convex problem. These algorithms are solved centrally and provide high-quality suboptimal solutions with polynomially-bounded worst-case complexity. The case of admission control (one DoF) is treated in [55] and [56], jointly with beamforming and power control, respectively. The joint formulations are relaxed to semidefinite programming problems, which are convex. The general case of scheduling (many DoF) and power control is treated in [57]. Therein, the joint formulation is relaxed to a geometric programming problem, which admits a convex reformulation.

The problem considered in [57] is revisited in [58], for a slightly different scenario, and an alternative formulation is proposed. The key difference is that the novel formulation maintains the linearity of the original QoS power control problem (3.6)–(3.7). Specifically, the joint scheduling and QoS power control problem is modeled as a so-called MILP problem. MILP problems are NP-hard in general, but due to their linearity they can be solved rather efficiently, in most instances, by means of branch-and-bound techniques. Hence, contrary to the approach in [55, 56, 57], the proposed formulation in [58] enables finding the optimal solution, yet at the cost of occasional high complexity.

3.2.2 Joint Scheduling and QoS Power Control

The fundamental question is how to jointly allocate DoF and power optimally, in order to minimize the overall interference and maximize the number of links that can be served. To state this problem formally, we assume that there are $N < K$ available orthogonal DoF and denote the set of their indexes as $\mathcal{N} \triangleq \{1, \ldots, N\}$. This is a valid assumption when the goal is to maximize the spectral efficiency. If it was $N > K$ the solution of the problem would have been to trivially schedule one link per DoF. The other main assumption in the spectrum-sharing paradigm, that is of interest to SAPHYRE, is that the K links requesting service can be potentially scheduled to any DoF. We denote the transmission powers and the channel gains in the nth DoF as $\{p_n^k\}_{k=1}^K$ and $\{G_{nk}\}_{\ell,k=1}^K$, respectively. The SINR that the kth receiver experiences when tuned to the nth DoF is then equal to

$$\text{SINR}_n^k \triangleq \frac{G_{kk}^n p_n^k}{\sum_{\ell \neq k} G_{nk}^n p_{\ell}^n + \sigma_n^2}. \quad (3.8)$$

We say that the kth link is assigned to the nth DoF when there exist feasible powers $\{p_n^k\}_k$ such that $\text{SINR}_n^k \geq \gamma_k$. We call the kth link served or admitted when it is assigned to some DoF. The problem is then to find the optimum (i) scheduling,
i.e. assignment of links to DoF; and (ii) transmission powers, that maximize the number of admitted receivers and minimize the total transmission power required to serve them.

In order to solve the joint QoS problem, we formulate it as a constrained optimization problem. To proceed, we introduce the auxiliary binary variables \(\{ s^n_k \}_{n \in \mathcal{N}, k \in \mathcal{K}} \), one per DoF and link. Each binary variable \(s^n_k \) models the following scheduling question: Can the \(k \)th link be assigned to the \(n \)th DoF? The answer is “yes” when \(s^n_k = 1 \) and “no” otherwise. It is evident that the primary goal of the optimization should be to maximize the number of positive answers. Hence, using the auxiliary variables \(\{ s^n_k \} \), we formulate the problem as

\[
\max_{\{ p^n_k \in [0, P] \}_{k \in \mathcal{K}}, \{ s^n_k \in \{0, 1\} \}_{n \in \mathcal{N}, k \in \mathcal{K}}} \sum_{k=1}^K \sum_{n=1}^N s^n_k - W \sum_{k=1}^K \sum_{n=1}^N p^n_k \tag{3.9}
\]

subject to

\[
\frac{G^n_{kk} p^n_k + M (1 - s^n_k)}{\sum_{\ell \neq k} G^n_{\ell k} p^n_{\ell} + \sigma^2_n} \geq \gamma_k \quad \forall k \in \mathcal{K}, \forall n \in \mathcal{N}, \tag{3.10a}
\]

\[
p^n_k - P s^n_k \leq 0 \quad \forall k \in \mathcal{K}, \forall n \in \mathcal{N}, \tag{3.10b}
\]

\[
\sum_{n=1}^N s^n_k \leq 1 \quad \forall k \in \mathcal{K}. \tag{3.10c}
\]

In what follows, we will explain the role of each equation in (3.9)–(3.10), starting the discussion with the conditions (3.10) and concluding it with the motivation of the objective function (3.9). In the process, we will also elaborate on the operational meaning of the (yet undefined) scalar positive-real parameters \(W \) and \(M \) that appear in (3.9) and (3.10a).

Equation (3.10a) defines \(N \) SINR constraints, one per available DoF, for each of the \(K \) links. Effectively, the binary variable \(s^n_k \) acts as an “if statement” that determines whether the \((k, n)\)th inequality of (3.10a) is active in the power control problem. When \(s^n_k = 1 \), the \((k, n)\)th inequality falls back to defining a standard SINR constraint. When \(s^n_k = 0 \), the \((k, n)\)th inequality does not impose any constraint on \(\{ p^n_k \}_{k} \), provided that \(M \) is large enough to satisfy the inequality for all feasible values of \(\{ p^n_k \}_{k} \).

Hence, we need to choose the parameter \(M \) so that all \(K N \) inequalities (3.10a) are fulfilled when \(\{ s^n_k = 0 \} \), irrespective of the values for \(\{ p^n_k \} \). It suffices to consider the worst-case scenario, where all the interfering transmitters use full power, whereas the transmitter in the direct link is silent. Setting \(\{ p^n_k = P \}_{\ell \neq k} \) and \(p^n_k = 0 \) in each inequality in (3.10a), and selecting the maximum resulting lower bound we have

\[
M \geq \max_{k, n} \gamma_k \sum_{\ell \neq k} G^n_{\ell k} P + \gamma_k \sigma^2_n. \tag{3.11}
\]
Note that with $s_n^k = 0$, the optimization (3.9)–(3.10) will yield $p_n^k = 0$. This is so because then p_n^k appears only as interference in the denominator of the “active” SINR constraints in (3.10a), while the second term of the objective function (3.9) seeks to minimize the total transmission power. Hence, there is no need to explicitly account for the links that do not transmit in the denominator of SINR$_n^k$.

Equation (3.10b) is a technical condition that is, strictly speaking, redundant in the sense that the optimization problem will yield the same solution without this constraint. When $s_n^k = 1$, (3.10b) basically restates the power constraint, and when $s_n^k = 0$, it effectively sets the optimal p_n^k to zero. This will however be the result even without requiring it explicitly in a separate constraint, as discussed above. While the constraint (3.10b) does not affect the optimal solution, including it may speed up the algorithms used to find a numerical solution.

Equation (3.10c) makes sure that each link is assigned to at most one DoF. Since QoS is already guaranteed to the link when just one out of N respective constraints (3.10a) is active, multiple assignments would solely increase the interference in the wireless network. If there are extra DoF, i.e. other feasible assignments, the system would rather utilize them to serve more links or to decrease the total transmission power.

Note that by letting the sum in (3.10c) take on values smaller than 1 (actually 0), admission control functionality is included in the joint optimization problem (3.9)–(3.10). This means that when there are not enough resources, the system may deny service to some links in order to ensure service to the remaining ones. For a denied link k, we get $\{s_n^k = 0\}^n$. This insight leads to the following result.

1 Claim. Optimization problem (3.9)–(3.10) is always feasible.

Proof. A trivial feasible solution is always $\{s_n^k = 0\}_{n \in \mathbb{N}^N}^k$ for any $\{p_n^k \in [0, P]\}_{k \in \mathbb{K}}$. However, this is the worst possible solution from QoS perspective, since it corresponds to the case that none of the K links is served. Another trivial solution is to serve one link per DoF.

If the inequalities (3.10c) were replaced with equalities, the resulting problem would be a restriction of (3.9)–(3.10), since the set of feasible solutions would be a subset of the original one. This restricted problem would become infeasible when it is impossible to admit all links.

The objective function in (3.9) is a sum of two terms and the second term is scaled with a weight $W \geq 0$. The first term effectively counts the number of links served; hence, it rewards solutions that provide service to many users. The second term represents the total amount of power spent. Due to the minus sign, it penalizes solutions that are power-inefficient. By choosing W, we can trade off between the two conflicting objectives of saving power, and serving many links. In the special case that $W = 0$, we obtain the solution that maximizes the number of served users, subject to the power constraints.

Somehow remarkably, exploiting the special properties of the two terms, we can simultaneously achieve the best of both objectives, by fine-tuning the parameter.
3 Utility Models

W. This is possible because the first term is discrete (with step size 1) and the second term is bounded by KP (when all K transmitters use maximum power P). Hence, adapting the ruler analogy argument of [55, p. 2684], we can ensure that the objectives do not overlap when W is chosen such that $1 > WKP$. The interpretation of this choice is that the scheduling objective is prioritized over the power minimization, since the reward for serving one link is higher that the maximum potential power saving. Thus, we have the following result

2 Claim. If W is chosen according to

$$0 < W < \frac{1}{KP}$$

(3.12)

then the solution has the following properties: (i) The maximum possible number of links will be served, as if $W = 0$; and (ii) No other solution that serves this set of links can operate with less power.

3.2.3 Mixed-Integer Linear-Programming Reformulation

The proposed formulation of the joint power control and scheduling problem in (3.9)–(3.10) is nonconvex, owing to the binary variables $\{s^n_k\}$. In fact, it can be shown that (3.9)–(3.10) is NP-hard. The computationally intensive components of the problem are the scheduling and admission control. Due to its combinatorial nature, the optimization with respect to the variables $\{s^n_k\}_{k \in K}$ has a worst-case complexity that is exponential in the number KN of binary optimization variables. In what follows, we show that (3.9)–(3.10) admits a MILP problem representation. This is no surprise, cause we have a priori designed it so that it does. The key point is that the binary variables were introduced so that constraints (3.10a) are actually linear inequalities. Since the denominator of the fraction is positive, (3.10a) can be equivalently rewritten as

$$G^n_{kk}p^n_k + M(1 - s^n_k) \geq \gamma_k \sum_{\ell \neq k} G^n_{\ell k}p^n_\ell + \gamma_k \sigma^2_n \iff$$

$$\gamma_k \sum_{\ell \neq k} G^n_{\ell k}p^n_\ell - G^n_{kk}p^n_k + M s^n_k \leq M - \gamma_k \sigma^2_n \iff$$

$$\sum_{\ell=1}^K A^n_{\ell k} p^n_\ell + M s^n_k \leq B_k,$$

(3.13)

where we have defined $B_k \triangleq M - \gamma_k \sigma^2_n$ and

$$A^n_{\ell k} \triangleq \begin{cases} -G^n_{kk} & \text{if } \ell = k, \\ \gamma_k G^n_{\ell k} & \text{if } \ell \neq k. \end{cases}$$

(3.14)

Replacing (3.10a) with (3.13), the optimization (3.9)–(3.10) is equivalently recast
as the following MILP problem in standard form

$$\max \left\{ \sum_{k=1}^{K} \sum_{n=1}^{N} s^{n}_{k} - \sum_{k=1}^{K} \sum_{n=1}^{N} p^{n}_{k} \right\}_{k \in K}$$

subject to

$$\sum_{\ell=1}^{K} A^{n}_{\ell k} p^{n}_{\ell} + M s^{n}_{k} \leq B_{k} \quad \forall k \in K, \forall n \in N,$$ \hspace{1cm} (3.16a)

$$p^{n}_{k} - P s^{n}_{k} \leq 0 \quad \forall k \in K, \forall n \in N,$$ \hspace{1cm} (3.16b)

$$\sum_{n=1}^{N} s^{n}_{k} \leq 1 \quad \forall k \in K.$$ \hspace{1cm} (3.16c)

3.2.4 Discussion

MILP are LP problems that comprise both integers and continuous variables. Even though they are in general NP-hard, there are many algorithms and software packages, e.g. GLPK or CPLEX, that find the global solution, very efficiently in the vast majority of the instances. The proposed framework can be directly used in practice for small-scale problems, where “small-scale” is of course relative to the computational capacity of the resource allocation unit. In addition, as the MILP reformulation allows us to solve the problem exactly and much more efficiently than a brute-force search, it also provides a benchmark for performance evaluation of competing, suboptimal algorithms in offline simulations. This is particularly important for the SAPHYRE simulations that will be performed in WP4.

A basic prerequisite is that there is a central controller that is aware of all the channel gains and requested SINR thresholds. This renders the solution directly applicable in systems that have such a controller. The proposed method can also be used to provide fundamental limits for decentralized solutions, assuming that the signaling overhead is negligible and that the optimal feedback can be fed back under tight latency constraints (which is NP-hard in practice).

Future work includes a more detailed study of the problem structure and specifically of the reduction in computational complexity that is possible by imposing extra constraints such as (3.10b). One may also consider sub-optimal variations that will substantially decrease computational complexity, e.g. by solving the problem on a slot by slot basis.

Finally, another direction that will be pursued within the duration of the project is the extension of the current framework to incorporate multi-antenna transmitters. In this context, transmit beamforming may be realized (jointly with scheduling and QoS power control) by selecting beamforming vectors from a predefined code-book. This selection can be modelled using extra binary variables. The resulting framework will then have enhanced functionality, but also larger dimension, thus complexity.
3.3 Game-Theoretic Strategies

Radio resource allocation on wireless channels is known to involve several design choices from the algorithmic point of view. One key issue involves the definition of the main allocation objective: since the channel quality is perceived differently by different users, it may be thought of allocating most of the resources to the users who see the best channel conditions, which however lead to unfairness from the users’ perspective. Alternatively, some form of fairness may be sought, which imposes sometimes not to allocate the users with the best channel conditions (and thereby potentially decreasing the allocation efficiency).

Generally speaking, this trade-off is often solved with a priori choices. However, these solutions are not easy to set up, nor they can be dynamically adapted. Conversely, game theory can be used to solve this problem in a more efficient manner, by putting the burden of the trade-off resolution on some preference/utility definitions, which are much easier to define from the operator’s standpoint, and also enable dynamic adaptation of the allocation.

A sample challenge of this kind arises in multiple access schemes using Orthogonal Frequency Division Multiple Access (OFDMA), such as the downlink of Long Term Evolution (LTE) systems. Assume that several users need to be served by allocating packets belonging to their requested flows on the OFDMA frame. Since their perceived channel quality is different (and, additionally, varies also according to the subcarrier of choice) the problem becomes a complex task, in view of the high number of possible allocations among which to choose. Additionally, the aforementioned trade-off between maximizing the throughput and achieving fairness (at least in a long term perspective) further complicates the problem.

To study the problem through a game-theoretic approach, we follow the model proposed in [59]. Here, a modular representation is introduced, where the radio resource management is split between two functional entities, i.e. a credit-based scheduler and the actual resource allocator. The scheduler determines which packets, taken from different flows, are candidates to be served in the next allocation round. The resource allocator associates the packets with groups of OFDMA subcarriers, also accessed in a Time Division (TD) fashion, so that the resources to allocate are time/frequency resource blocks. In this choice, the resource allocator exploits a degree of freedom, represented by the number of packets selected by the scheduler (larger than the number of slots).

The resulting allocation can be regulated according to a trade-off between two contrasting objectives, i.e. that of throughput maximization, which is achieved by selecting the packets only according to a channel quality rationale, and fairness among the flows, which requires to pursue equity among the achieved rates. Indeed, this trade-off is reflected by the number of packets selected by the scheduler: when it is minimum, i.e. only the packets that fit the OFDMA frame are selected, all packets are mandatorily allocated and the resource allocator has no choice. Here the allocation is only determined by the credit-based scheduler, which ensures fairness (the users with higher credits are allocated). Conversely, if the number of selected
3.3 Game-Theoretic Strategies

packets is high, the resource allocator can restrict the selection to the packets of the users with the best quality, entirely neglecting any fairness among flows.

Within this framework, we propose a game-theoretic approach [60] to resolve this trade-off between contrasting objectives. In fact, the idea is to establish two virtual players, one representing the scheduler needs, i.e. to ensure fairness to the users, and the other reproducing the resource allocation perspective, i.e. to select those users which are experiencing better channel quality. A coordination game is established between these two players, which leads to the derivation of a simple yet effective algorithm to identify a Pareto-efficient trade-off point.

3.3.1 System Model

The downlink transmission on a LTE system, using OFDMA multiplexing, requires coordination of multiple flows directed to the users to be coordinated, so that a number of packets are selected for possible transmission from each flow. In the following, this operation will be referred to as scheduling. However, actual transmission also requires to match the selected packets to a given resource block in a channel-aware fashion. Thus, it is necessary to eventually select which resources to utilize for the selected packets. Such an operation will be referred to as resource allocation.

In the LTE standards, the design of policies for resource management is intentionally left open to allow developers to implement their own strategy of choice. However, in the following we adopt a two-fold model where scheduling and resource allocation are managed by two different modules: a scheduler, operating at the transport layer (thereby possibly distinguishing among different kinds of traffic) and a resource allocator, which actually implements the Medium Access Control (MAC) sublayer. The scheduler determines which packets must be passed to the allocator and their order according to an internal scheduling policy. The allocator selects for transmission a subset of them with the aim of maximizing the advantages of multiuser diversity. In this case only a loose cross-layer is introduced, guaranteeing a certain modularity between scheduler and radio resource allocator (RRA).

In particular, we call L the number of resource blocks that the resource allocator is entitled to assign. This is subject to a constraint $L \leq L_{\text{max}}$, where L_{max} is a maximum value which corresponds to assigning every resource block. For simplicity, we consider that, to limit the interference caused to the neighboring cells, L is set to a fixed value which is less than or equal to L_{max}. The value assigned to L is communicated to the scheduler by the resource allocator. Actually, this represents a form of cross-layer interaction among the modules, which is intentionally kept to a minimum level, thereby promoting modularity and tunability of the approach.

Upon knowing L, the scheduler determines a number D of packets to send to the resource allocator, where in general $D \geq L$. The exact choice of D influences the entire allocation. As a matter of fact, if $D = L$, the resource allocator has no degree of freedom as to which packets to allocate (while, obviously, it must allocate the packets to the best channels as perceived by the users). By increasing D, the
3 Utility Models

A graphical representation of the system is given in Figure 3.1.

3.3.2 The Proposed Game-Theoretic Approach

The choice of D determines a trade-off between the possible objectives of throughput and fairness. We now present a game-theoretic approach to set D; our proposed methodology enables a dynamic setup of D without any need for a preliminary evaluation, e.g. where D is set to some arbitrary value, of the possible equilibria of the system, nor it is required to re-compute the system equilibria if the network and channel conditions change. Instead, the choice of D is directly derived from the definitions of the contrasting utilities between which a trade-off is sought (specifically, throughput and fairness). Together with the separation of the resource management process into two functional entities (scheduler and RRA), this is key to achieve a computationally efficient online allocation strategy.

In our formulation, the scheduler (player 1) and the RRA (player 2) are represented as players of a game whose aim is the decision of the value for D. Both players make a proposal s_j, with $j = 1, 2$, respectively. The game is inspired by coordination games, where two players get non-zero payoff only if they converge on a common agreement. In our case, if proposals s_1 and s_2 coincide, D is selected as their common value. However, the choice of s_1 and s_2 is also done according to the utility of the proposer, i.e. the fairness for the scheduler and the throughput for the RRA, respectively.

In the following, we introduce some assumptions for the sake of simplicity in the exposition. We consider a network scenario with only two users; this is not to be confused with the two “virtual” players of the game, i.e. the scheduler and the resource allocator. Besides, this assumption is just made to ease the presentation,
3.3 Game-Theoretic Strategies

The players are the scheduler and the RRA.

Their action spaces are the set of values of D that can be proposed, i.e. $S_1 = S_2 = \{L, L+1, \ldots, 2L\}$.

Both payoffs are 0 if the proposals s_1 and s_2 do not coincide, i.e. there is no agreement on the value of D. This assumption is drawn from the more general theory about coordination games.

When $s_1 = s_2$, the payoffs are assigned to fairness $F(s_1, s_2)$ for the scheduler, measured using Jain’s index, and the throughput $T(s_1, s_2)$ for the RRA.

The last point is arbitrary, as other definitions can be used; the important requirement is that $F(s, s)$ and $T(s, s)$ are decreasing and increasing in s, respectively. The resulting bi-matrix representation of the game is given in Figure 3.2. The fairness is a decreasing function of D: its maximum value is 1 while the minimum is $1/2$, i.e. $1/N$ where N is the number of flows. On the other hand, the throughput is an increasing function of D varying in the range $[T_{\text{min}}, T_{\text{max}}]$, where T_{min} is achieved when no degree of freedom is given to the allocator, while T_{max} is obtained when the RRA has enough freedom to allocate only the best L resources. Both maximum throughput and minimum fairness are reached for $D = 2L$, under the assumption that there are always at least L packets available for selection by the scheduler from each queue. All the strategies along the diagonal are Pareto efficient Nash equilibria. This means that improving the payoff of one player results in worsening the other’s outcome. Thus, once the value of L is fixed, there is no unique evolution of the game and, in any case, a trade-off is encountered.

To determine a trade-off point, we propose an algorithm which tries to automatically estimate an efficient value of D for each frame. The value is chosen considering the entire history of the game, thus the model we propose is a repeated game with perfect information. The aim is to reach an acceptable level for both payoffs after a number of repetitions. Note that this proposed algorithm is just an example and can be replaced by other analogous procedures.

![Figure 3.2: Bi-matrix representation of the game.](image-url)
1) Both scheduler and RRA randomly pick a value for D.
2) If the choices coincide, D is set and the game ends, otherwise a bargaining phase goes on until a common point is chosen. Every time the players disagree, both get zero payoff.
3) The goal of each round of the loop is moving towards the diagonal of the bi-matrix step-by-step. Each player decides whether or not to change its previous proposal based on its level of satisfaction, i.e. the ratio between the value actually achieved and the maximum achievable. The higher the satisfaction, the higher the probability that a player changes its choice with a value more convenient for the other. If S_D and RRA_D are the proposals for D made by the scheduler and the allocator, respectively, and S_s and RRA_s the respective levels of satisfaction when the game is played, we select the changes as follows.
 - If $S_D > RRA_D$, we are in the lower triangle of the matrix. We can move towards the diagonal by going up (decrement of S_D), or right (increment of RRA_D), or in both directions. For both players, these options lead to higher values in their own utility function to the detriment of the other’s, thus the willingness to change should be a decreasing function of the respective satisfaction level. Thus, we select
 \[\text{Prob}\{S_D \text{ up}\} = 1 - S_s \]
 \[\text{Prob}\{RRA_D \text{ right}\} = 1 - RRA_s \]
 - If $S_D < RRA_D$, we are in the upper triangle of the matrix. The diagonal can be reached by going down (S_D increment), or left (RRA_D decrement), or in both directions. The situation is now reversed, as a deviation in its own action implies a reduction in the payoff of each player in favor of the other’s. Therefore, the probability of moving must be an increasing function of the respective satisfaction, which is obtained for example by choosing
 \[\text{Prob}\{S_D \text{ down}\} = S_s \]
 \[\text{Prob}\{RRA_D \text{ left}\} = RRA_s \]

In this manner, we define an algorithm whose goal is to lead the choice of D towards an intermediate value which offers both good throughput and satisfactory fairness.

3.3.3 Applications of the Proposed Approach in a Multi-Agent Context

The algorithm proposed above can be shown to reach a Pareto efficient point, which trades throughput for fairness in an efficient and tunable manner. However, this should not be seen just as a way to set the equilibrium between contrasting needs. In fact, a direct extension may be identified to cases where the multiple players of the game are not just virtual agents representing different layers of the same entity, e.g. the radio resource management procedure at one base station. Rather, the
There are at least two such extensions which are relevant to the scope of the SAPHYRE project. A first extension of this game-theoretic setup involves the interaction between multiple base stations, possibly belonging to different operators (this may also partially applied to the case where the operator is the same, but the exchange of management policies among the base stations is made difficult by some externality).

This case, which can be analyzed in a practical scenario similar to those studied by [61] can be framed in the context of games with incomplete information. A multitude of games may be used to represent the different base stations, each one of them using two virtual players to represent the contrasting needs of throughput and fairness. In other words, the game discussed above, as well as some specific procedure to solve it, is played several times at the same time. Under the assumption of perfectly rational players, it may still be assumed that a Pareto efficient equilibrium point is sought by all base stations. However, due to interference caused by neighboring cells, a repeated version of this game may also be considered in order to reach a further equilibrium among the games played locally.

A further extension may involve the management of contrasting objectives among different operators. In this case, the game agents are not only virtual players which are assumed to blindly pursue the task of finding an efficient trade-off between throughput and fairness (or any other objective). Rather, the operators also try to drive the whole allocation of the system toward a favorable allocation for them, which is possibly reflected by the virtual players at one base station trying to influence the outcomes of other games. The extension of such games, which involves further utility modeling and possibly extension to Bayesian games, is a possible direction for further study.

3.4 Utility Model for WNC-Based Sharing

3.4.1 WNC-Based Sharing

Basic Concept

Wireless Network Coding (WNC) (a.k.a. Physical Layer Network Coding (PLNC)) [62], [63], [64], [65], [66] is a novel paradigm of the network structure aware modulation and coding. It follows ideas similar to the Network Coding (NC) [67]. Unlike to NC, the WNC operates directly in the signal space domain, i.e. directly with the continuous signal waveform representation. Major distinguishing features of WNC are: (1) the fact that it actively uses knowledge of the network topology and (2) the fact that the information is not routed through a single network path but it is rather “flooded” over the whole network and uses all possible paths between the source and the final destination. All this being performed at PHY layer.

The above stated paradigm enables the PHY layer to actively utilise all incoming
received signals. Apart of the useful signal carrying the desired data, we also define so called Complementary Side-Information (C-SI) signals [64] which carry the information contents that does not directly depend on the desired data but contains the other source data that also influence the useful signal. The C-SI can be viewed as the “friendly interference”. The WNC strategy works with three types of the signals: (1) useful signal, e.g. signal with hierarchical data for HDF strategy, (2) signal with C-SI, (3) classical interference. See [64], [65],[66] for details.

From the perspective of the utility model, the WNC PHY layer strategy introduces several new aspects. First of all, we cannot define the utility function purely in terms of the interference levels. The classical interference can however be present. But the most important input entity is the form and amount of the C-SI available at given node. This requires a very different set (cf. with SINR) of the input parameters to be used in the utility function. This topic is not currently covered, to the best of our knowledge, by any existing research works.

We formulated an initial simplified form of the core utility input elements. It can serve for the investigation of the mutual relation between WNC related performance parameters under various strategies and game theory utility functions. One of the desired outputs is the identification (colouring) of the geographical regions according to the optimality under different WNC strategies – PHY relay sharing schemes (HDF (Hierarchical Decode and Forward), JDF (Joint DF), AF (Amplify and Forward), no relay sharing). This optimality map and corresponding relay operation is likely to be different for 2 different operators at one geographical region and therefore a conflict on a required relay operation must be solved by the game theory.

The current initial stages of the work concentrate on identifying proper quantitative description and elements suitably reflecting the strategy, the topology and the core performance parameters.

Relevance to the SAPHYRE Project Goals

The SAPHYRE project goals, the spectrum and the infrastructure sharing, are directly addressed by the WNC technique on its own. The WNC technique introduces shared relays and the relevant coding, modulation and processing technique required to achieve the sharing gain. The PHY resource sharing management layer supported by the a proper utility metric and corresponding resource allocation strategies, e.g. the game theory, can provide an additional sharing gain on top of WNC itself.

3.4.2 Core Utility Model Input Elements

Signal Types

The WNC works with three types of received signals. Their definitions follow ($I(\cdot;\cdot)$ denotes the mutual information).
3.4 Utility Model for WNC-Based Sharing

- **Hierarchical Information (HI) signal**
 - The signal x is HI signal on desired data a iff $I(a; x) > 0$.
 The signal x carries information about desired data.

- **Complementary Side-Information (C-SI)**
 - Let x be HI signal on desired data a then the signal z is C-SI for complementary data b iff $I(b; x) > 0$ and $I(b; z) > 0$.
 The HI signal of the desired data a is influenced by other data b and C-SI signal provides the information about those b data. Thus, the C-SI is *friendly interference* – helps removing influence of the complementary data b.
 For example, in 2-Way Relay Channel, the signal forwarded from the relay to destination A is HI; the information from the other source B is C-SI. The C-SI should *not be confused* with Side-Information signal, where y is SI signal if $I(a; y) > 0$, i.e. additional observation of the desired data.

- **Interference (IFC) (classical, harmful) signal r w.r.t. $x(a)$**
 - It must hold $I(a; r) = 0$, $I(b; r) = 0$ for any other complementary data $(I(x; b) > 0)$.

Relaying Strategy

The WNC can use various relaying strategies (HDF, JDF, AF, no sharing). Each relaying strategy is further described by the particular PHY layer technique used by the relay. Particularly, the HDF strategy can use various relay hierarchical codebook classes (minimal, extended, full/joint mapping).

Channel State

The channel state, including its parametrisation, is fully defined by the stochastic input-output description, i.e. the observation likelihood function conditioned by the (hierarchical) data and channel parameters. It can be conveniently equivalently described by the set of the parameters for a given channel, e.g. the SNR in the case of AWGN linear channel.

3.4.3 Core Utility Performance Metric

This section defines the utility function model. In the initial simple model, we work with simple utility μ which is the achievable kth user rate $\mu = R_i^{(k)}$ in the ith stage of the network (typically imposed by the half-duplex constraint). The utility μ is generally a function of (1) the signal type which can be HI, C-SI or IFC.

\[\mu = \text{a function of signal type (HI, C-SI, IFC)}\]

\[\mu = \text{an achievable rate in the } i\text{th stage of the network}\]

\[\mu = \text{imposed by the half-duplex constraint}\]

\[\mu = \text{generalized for other utility metric, e.g. sum-rate, service outage probability, etc.}\]
3 Utility Models

Figure 3.3: 2-Source Relay Network (2-SRN) with Partial C-SI.

$T \in \{H, C, I\}$, (2) the relaying strategy S including particular codebook class C, e.g. HDF with Minimal-HXC, (3) the index $i \in \mathbb{N}$ of the network stage, (4) the channel state represented by a proper parameter Γ (typically a vector of SNRs for all signal types and all incoming signals)

$$\mu_i^{(k)} = \mu \left(S_i^{(k)}(C), \Gamma_{H,1}^{(k)}, \Gamma_{C,1}^{(k)}, \Gamma_{I,1}^{(k)} \right).$$

(3.21)

3.4.4 2-SRN HDF Example

The 2-Source Relay Network (2-SRN) is defined in Figure 3.3. The 2-SRN is a two-stage network due to the half-duplex constraint at the relay. We use the HDF strategy. The first stage is the Hierarchical MAC and the second stage is the Hierarchical BC. The utility functions for users $k \in \{A, B\}$

$$R_1^{(k)} = R_{HMAC}(C) \left(\Gamma_{H,1}^{(k)} \right),$$

(3.22)

$$R_2^{(k)} = R_{HBC}(C) \left(\Gamma_{H,2}^{(k)}, \Gamma_{C,2}^{(k)} \right)$$

(3.23)

where $\Gamma_{H,1}^{(k)} = \gamma_x, k, \Gamma_{H,2}^{(k)} = \gamma_y, k, \Gamma_{C,2}^{(k)} = \gamma_z, k$.

The resulting functions can be generally complicated functions of the channel states. However, for a particular case of 2-SRN using HDF strategy with minimal HXC (Hierarchical eXclusive Code) with variety of constellations, we have shown [65] that the following approximation holds with high fidelity

$$R_{HBC}(\gamma_y, \gamma_z) \approx \frac{R_{HBC}^{\text{perfCSI}}(\gamma_y) R_{CSI}(\gamma_z)}{\log |A|}.$$ (3.24)

This approximation simplifies the evaluation of the utility.

Our goal in future project stages is to find similar approximations for the more complicated networks and relaying strategies.
4 Concluding Remarks

This report aims to provide a basis for interference and utility models for the SAPHYRE project as a whole. We have reviewed existing models from the literature and discussed new approaches that have already been developed in recent work of the SAPHYRE partners. Part of these results were developed in a cooperation between the partners FhG and LiU. The results are published in [26, 27]. Other SAPHYRE-publications have been submitted by FhG [32, 28] and by CFR [60]. A joint SAPHYRE work of TUIL and TUD can be found in [39]. CTU’s publications [64], [65], [66] present an alternative approach where some form of the interference in WNC systems can help decoding the data at the final destination. This type of strategy requires different form of the utility metric. Results of [65] provide a simple form of such utility to be used by other partners in related project tasks.

In the first part of the report it is shown that interference has a certain mathematical structure that can be used as a basis for the development of efficient iterative algorithms, which are guaranteed to converge in a reasonable time. Specifically, the following results are shown.

- Many interference-coupled systems can be modelled as special cases of the framework of interference functions. This means that they behave monotonic with respect to the underlying resources. This is an important property which deserved more attention. Interesting analytical opportunities arise from interference functions which are both monotonic and convex. Then certain resource allocation problems have an equivalent convex form. That is, even if the original problem is non-convex, it is possible to derive an equivalent convex problem that yields the solution of the original problem.

- The problem of interference balancing (max-min SINR balancing) is fundamental, since it provides an indicator for the congestion of an interference coupled system. In [32] sufficient conditions for existence and uniqueness of an optimiser are derived. These results will serve as the basis for further research within SAPHYRE. One focus will be the development of distributed interference balancing algorithms.

- In Section 2.4 the two-way relaying technique is extended to the resource sharing scenarios that are of interest to SAPHYRE.

The second part of the report is focused on utility models and the consequences for the optimisation of resources in the system.
4 Concluding Remarks

- A framework for joint scheduling and power control is derived for SINR-based QoS targets in Section 3.2. It is shown how this framework can enable non-orthogonal spectrum sharing between operators. The same resource is allocated to many links, provided that the transmit powers can be adjusted such that the interference is tolerable and QoS is guaranteed to the links.

- In Section 3.3, an algorithm is proposed that reaches a Pareto efficient point, which trades throughput for fairness in an efficient and tunable manner. This involves the interaction between multiple base stations, possibly belonging to different operators.

- In Section 3.4 a conceptually different approach is taken, based on ideas from network information theory. While in the classical design paradigm interference is treated as something that has to be avoided, the framework for Wireless Network Coding (WCN) proposed in Section 3.4 exploits the information-theoretic insight that in a network, “interference” can carry information. Also strong interference can be cancelled, so under certain circumstances it can be desirable to have strong interference rather than weak interference. The WNC technique introduces shared relays and the relevant coding, modulation and processing technique required to achieve the sharing gain. The PHY resource sharing management layer supported by a proper utility metric and corresponding resource allocation strategies, e.g. game theory, can provide an additional sharing gain on top of WNC itself.

This deliverable has summarised various approaches to interference and utility modelling, involving different areas like power control theory, game theory and information theory. This initial report aims at providing a basis for the research in the other work packages of SAPHYRE, especially WP3 and WP4.
Bibliography

Bibliography

Bibliography

