Frequency Domain Equalization for Dispersive Optical Channels with Intensity Modulation and Direct Detection

Mike Wolf, Sher Ali Cheema, and Martin Haardt

Technische Universität Ilmenau, Communications Research Laboratory, Germany

11. ITG Fachkonferenz “Breitbandversorgung in Deutschland”

Introduction

Examples of optical systems that use LED-sources (1)
- car-to-car communication based on VLC (figure from [1])
- LiFi-systems (figure from [2])
- VLC: Visible Light Communication
 - LED has limited modulation BW
 - time domain dispersion
 - ISI at high data rates

Explanation of Terms

Examples of optical systems that use LED-sources (2)
- plastic optical fiber transmission (figures from [3])
- BW limitation due to multipath dispersion
- Gaussian low-pass filter model
- ISI at high data rates

When does the term single carrier modulation make sense? (1)
- the figure shows the optical field for a coherent source
- we see a sinusoidal 'single carrier'
When does the term single carrier modulation make sense? (2)

- for coherent sources: $t_{\text{coherence}} \gg T_b$
- PSK or QAM can be used on a single or multiple carriers

For coherent sources, the term single carrier modulation makes sense because the coherence time is much larger than the bit duration, allowing coherent detection. For non-coherent sources, the optical field is broadband noise, not a single carrier!

Intensity Modulation and Direct Detection (IM/DD)

- we modulate the instantaneous optical power and use DD
- the optical signals are not described on the field-level, they are modeled on the instantaneous power level

\[p_{\text{tx}}(t) = p_{\text{tx}}(t) \ast g(t) \]

- optical channel: LTI-system
- photodiode: responsivity R in A/W
- noise: AWGN-current with power spectral density N_0

NRZ-PAM, example ($M = 4$)

- the figure shows the instantaneous optical power $p_{\text{tx}}(t)$
- we clearly see baseband pulses :-)

Basic Modulation Schemes for IM/DD
Basic Modulation Schemes for IM/DD

Single sub-carrier modulation: DC-biased QAM, example ($M = 4$)

A modulated electrical sub-carrier (a driving current) modulates the LED intensity: **sub-carrier modulation** [4, 5]

- Here we use **half wave rectifying** [5], also referred to as asymmetrically clipping (AC) [1]

Power spectral density examples

- DC-biased BPSK requires $2 \times$ more BW than OOK (for rectangular pulse-shaping)

- P_{OOK}: required optical power of OOK (reference)

- Do not use energy and bandwidth efficiency results from RF!

Required bandwidth and power for AWGN channels

- P_{OOK}: required optical power of OOK (reference)

- Do not use energy and bandwidth efficiency results from RF!
The Basic Schemes in Dispersive Channels

Gaussian low-pass filter: frequency response and impulse response

- valid model for a POF
- analytical calculations easily possible
- \(G(f) = e^{-\pi (ft)^2} \)
- \(g(t) = \frac{1}{T} e^{-\pi (t/T)^2} \) with \(T = \sqrt{\frac{\ln 2}{\pi}} \)

Required average optical Rx-power (normalized)

\[10 \cdot \log_{10} \left(\frac{P_R}{\sqrt{N_0 R_b}} \right) \text{ dB} \]

relative data rate \(R_b/f_{3opt} \)

NRZ-PAM, \(M=2 \)

DC-QAM, \(M=4 \)

Relative data rate \(R_b/f_{3opt} \)

\(P_0 = 10^{-3} \)
The Basic Schemes in Dispersive Channels

Required average optical Rx-power (normalized)

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Average Rx-power (normalized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRZ-PAM, M=2</td>
<td>$P_{b} = 10^{-3}$</td>
</tr>
<tr>
<td>NRZ-PAM, M=4</td>
<td></td>
</tr>
<tr>
<td>NRZ-PAM, M=8</td>
<td></td>
</tr>
<tr>
<td>DC-QAM, M=4</td>
<td></td>
</tr>
<tr>
<td>AC-QAM, M=4</td>
<td></td>
</tr>
</tbody>
</table>

NRZ-PAM: eye-diagram: $M = 2$, $R_b = 2f_{3\text{opt}}$

- At Rx input

DC-biased DMT: we start with a normalized bipolar signal (1)

- **first:** time continuous signal without CP

$$x(t) = 2 \cdot \sum_{\mu=1}^{N_c} |Z_\mu| \cos \left(2\pi\mu \cdot \frac{t}{T} + \phi_\mu\right)$$

- T: symbol interval without CP (correlation interval at Rx)
- **same BW-efficiency** as M-PAM, if all N_c sub-carriers are M-QAM modulated
- **note:** this signal is bipolar
- **this is a Fourier-series** with Z_μ (complex QAM-symbols) being the Fourier-coefficients

- **corresponding time discrete signal without CP with $t_0 = T/N$**

$$x[n] = 2 \cdot \sum_{\mu=1}^{N_c} |Z_\mu| \cos \left(2\pi\mu \cdot \frac{n}{N} + \phi_\mu\right), \quad n = 0, 1, \ldots, N - 1,$$
DC-biased DMT: we start with a normalized bipolar signal (1)

- the last equation can also be written as an IDFT:

\[
x[n] = \sum_{\mu=1}^{N_c} \left(Z_{\mu} e^{j2\pi\mu\cdot \frac{n}{N}} + Z_{\mu}^* e^{-j2\pi\mu\cdot \frac{n}{N}} \right)
\]

- in matrix-vector notation: \(x = F^H \cdot X \)

\[
X = \begin{bmatrix} 0 & Z_1 & Z_2 & \ldots & Z_{N_c} & 0 & 0 & \ldots & Z_{N_c-1} & \ldots & Z_1 \end{bmatrix}^T
\]

- \(F \) is a \(N \times N \) DFT-matrix; \(x = [x_0 \ x_1 \ \ldots \ x_{N-1}]^T \)

DMT: the purpose of cyclic prefix (CP)

- we consider a sub-carrier with \(\mu = 3 \)
- blue: transmitted signal without cyclic prefix

DMT: the purpose of cyclic prefix (CP)

- we consider a sub-carrier with \(\mu = 3 \)
- blue: transmitted signal with cyclic prefix

DC-biased DMT: biased optical signal and clipping (without CP)

- instantaneous optical power \(p[n] \) (discrete version):

\[
p[n] = \begin{cases} P_0 s[n] & s[n] \geq 0 \\ 0 & \text{else} \end{cases}, \quad \text{where} \]

\[
s[n] = x[n] + k_{\text{clip}} \sqrt{E\{x^2[n]\}}
\]

- \(x[n] \) is approximately Gaussian distributed with \(E\{x^2[n]\} = 0 \)
- \(E\{s[n]\} = \text{DC-bias} \)
- \(P = E\{p[n]\} \approx P_0 \cdot \text{DC-bias} \)
DMT: the purpose of cyclic prefix (CP)

- we consider a sub-carrier with $\mu = 3$
- red: received signal with cyclic prefix

A more general look at the cyclic prefix:

- we use nothing but frequency domain equalization:
 - within the correlation interval, the convolution of $p(t)$ with $g_{\text{tot}}(t)$ appears as a cyclic convolution:
 \[
 y(t) = p(t) * g_{\text{tot}}(t) = p(t) \hat{*} g_{\text{tot}}(t)
 \]
 - hence, for the discrete signals, we get:
 \[
 y[n] = p[n] \hat{*} g_{\text{tot}}[n] \quad \text{DFT} \quad Y[\mu] = P[\mu] \cdot G[\mu]
 \]
 - this works for any $p[n]$, not only for DMT!
- here we use zero-forcing equalization:
 \[
 Z_\mu \cdot P_0 \approx P[\mu] = Y[\mu] / G_{\text{tot}}[\mu], \quad \mu = 1 \ldots N_c
 \]
A more general look at the cyclic prefix:
- we use nothing but frequency domain equalization:
- within the correlation interval, the convolution of \(p(t) \) with \(g_{tot}(t) \) appears as a cyclic convolution:
 \[
 y(t) = p(t) \ast g_{tot}(t) = p(t) \widehat{\ast} g_{tot}(t)
 \]
- hence, for the discrete signals, we get:
 \[
 y[n] = p[n] \ast g_{tot}[n] \Rightarrow Y[\mu] = P[\mu] \cdot G[\mu]
 \]
 \(\Rightarrow \text{this works for any } p[n], \text{ not only for DMT!} \)
- here we use zero-forcing equalization:
 \[
 Z_{\mu} \cdot P_0 \approx P[\mu] = \frac{Y[\mu]}{G_{tot}[\mu]}, \mu = 1 \ldots N_c
 \]

Required average optical Rx-power for DC-biased DMT
\[
P_b = 10^{-3}, \text{ no power loading (red)}
\]

\[
\frac{10 \cdot \log_{10} \left(\frac{PR}{\sqrt{N_0 R_b}} \right)}{\text{dB}} \quad \text{relative data rate } R_b/f_{3opt}
\]
AC-DMT: we use only the odd sub-carriers
- no clipping noise in odd sub-carriers after half wave rectifying

Required average optical Rx-power for AC-biased DMT

$$P_b = 10^{-3}, M_{\text{max}} = 1024$$

$$10 \log_{10} \left(\frac{PR}{\sqrt{N_0 R_b}} \right) \text{dB}$$

relative data rate $R_b/f_{3\text{opt}}$

NRZ-OOK (no equalization)
- $M=4$
- $M=16$
- $M=64$
- $M=256$
- $M=1024$

optimal bit-loading
- $P_b = 10^{-3}, M_{\text{max}} = 1024$

DC-biased DMT, optimal BL
Advanced Transmission Schemes with FDE: PAM

Signal structure and Rx-block diagram for CP-usage
- The FFT-usage can be enabled by means of a CP.
- ADC ➔ remove CP / FFT ➔ ZF-equalization (point-wise mult.) ➔ IFFT

--sync channel estimation

<table>
<thead>
<tr>
<th>Preamble</th>
<th>CP 1</th>
<th>PAM-data 1</th>
<th>CP 2</th>
<th>PAM-data 2</th>
</tr>
</thead>
</table>

Signal structure and Rx-block diagram for unique word usage
- But it's also possible to use a unique word (UW), see [2].
- Here, the FFT-window needs to include the UW part.

- ADC ➔ FFT ➔ ZF-equalization (point-wise mult.) ➔ IFFT

- Sync channel estimation

<table>
<thead>
<tr>
<th>Preamble</th>
<th>UW</th>
<th>PAM-data 1</th>
<th>UW</th>
<th>PAM-data 2</th>
</tr>
</thead>
</table>

Why PAM-block transmission as an alternative? (1)
- For low-pass channels, power efficient PAM is a natural choice.
- Disadvantages of DMT:
 - Bit-loading needs full channel knowledge at Tx
 - High peak to average power ratio ⇒ power hungry drivers
 - DC-biased DMT requires a very careful adjustment of the bias
 - Bit-loading enhanced AC-DMT can hardly combined with DC-balance
- Advantages of PAM:
 - Simple and energy efficient LED drivers
 - Adaptive Tx needs only modulation order
 (Note: larger symbol duration by means of repetition coding)
 - Simple DC-balance by XBYM line-codes (X Bits are mapped to Y M-level PAM-symbols)

Why PAM-block transmission as an alternative? (2)
- If $M - 1$ LEDs are used for PAM, we only need binary drivers.
- 5 level PAM example
- 5-PAM can be combined with a 8B4P line code to ensure DC balance.
Advanced Transmission Schemes with FDE: PAM

Required average optical Rx-power for PAM

\[
P_b = 10^{-3}, \text{NRZ-rectangular pulses, unique word}
\]

![Graph](image)

Advanced Transmission Schemes: PAM with FDE and DFE

Receiver structure

- \(\text{ADC} \ (T/2)\)
- \(\text{FFT} \ (N)\)
- \(\text{lin. equalization} \ (\text{and 2-fold dec.})\)
- \(\text{IFFT} \ (N/2)\)
- \(\text{DFE} \ (T)\)

- The linear frequency domain equalizer acts as a phase equalizer
- It realizes a **sample whitened matched filter** for the received pulses
- The equivalent discrete system between the transmitter and DFE-input (DFE: decision feedback equalizer) is a **minimum phase system**
Conclusions

- do not use energy and bandwidth efficiency results from RF
- a bandwidth efficient modulation scheme does not necessarily provide a good performance in dispersive channels
- to benefit from bandwidth efficient modulation, equalization is required
- here, frequency domain equalization has been considered for DMT and PAM
 - PAM shows very good performance even for linear equalization
 - FDE plus DFE gives best performance
- Outlook:
 - a very reliable synchronization and channel estimation approach has been presented in [3]
 - mutual information rates of PAM and DMT will be analyzed in our Icton 2017 contribution

Literature (1)

