Coupled Coarray Tensor CPD for DOA Estimation with Coprime L-shaped Array

Hang Zheng, Student Member, IEEE, Zhiguo Shi, Senior Member, IEEE, Chengwei Zhou, Member, IEEE, Martin Haardt, Fellow, IEEE, and Jian Chen

Abstract—Conventional canonical polyadic decomposition (CPD) approach for tensor-based sparse array direction-of-arrival (DOA) estimation typically partitions the coarray statistics to generate a full-rank coarray tensor for decomposition. However, such an operation ignores the spatial relevance among the partitioned coarray statistics. In this letter, we propose a coupled coarray tensor CPD-based two-dimensional DOA estimation method for a specially designed coprime L-shaped array. In particular, a shifting coarray concatenation approach is developed to factorize the partitioned fourth-order coarray statistics into multiple coupled coarray tensors. To make full use of the inherent spatial relevance among these coarray tensors, a coupled coarray tensor CPD approach is proposed to jointly decompose them for high-accuracy DOA estimation in a closed-form manner. According to the uniqueness condition analysis on the coupled coarray tensor CPD, an increased number of degrees-of-freedom for the proposed method is guaranteed.

Keywords—Coarray tensor, coprime L-shaped array, CPD, DOA estimation.

I. INTRODUCTION

Tensor-based direction-of-arrival (DOA) estimation using sparse arrays [1–7] has been an important topic since it can preserve the original structure of multi-dimensional received signals beyond the Nyquist sampling rate [8–12]. To increase the number of degrees-of-freedom (DOFs), augmented virtual arrays were derived from the second-order statistics of sparse arrays [13–17], where canonical polyadic decomposition (CPD) has been the typical approach to process the corresponding coarray statistics for retrieving angle information [18–20]. To solve the rank deficiency problem of the resulting coarray tensor, the ordinary CPD-based methods require the coarray statistics to be partitioned and then averaged to a full-rank coarray tensor [18–20], where the ignorance of spatial relevance among these partitioned coarray statistics results in a performance deterioration for DOA estimation. Therefore, how to effectively process the coarray statistics for tensor-based sparse array DOA estimation is still at the initial stage.

II. FOURTH-ORDER TENSOR STATISTICS FOR COPRIME L-SHAPED ARRAY

To handle the multiple tensors sampled from colocated antenna arrays, the idea of coupled CPD has been proposed to jointly decompose those tensors for transmitted symbol estimation [21]. Since then, the coupled CPD approach has been introduced for harmonic retrieval [22, 23], blind source separation [24], joint channel and symbol estimation [25], image fusion [26, 27], and MEG/EEG signal processing [28, 29]. However, these existing methods assume that the Nyquist sampling theorem holds, which is not the case for signals that are received by sparse arrays. To establish the relationship between the coupled CPD and sparse linear array signal processing, a coupled CPD-based multiple invariance ESPRIT method is reported in [30], which is further extended to generalized sparse array geometries [31]. Nevertheless, since these ESPRIT-like methods directly factorize the first-order signals into multiple coupled tensors instead of deriving virtual arrays, they fail to increase the number of DOFs for DOA estimation. Therefore, it is still challenging to incorporate the coupled CPD to sparse arrays for coarray tensor-based DOA estimation with an increased number of DOFs.

In this letter, we propose a coupled coarray tensor CPD-based two-dimensional DOA estimation method for a designed coprime L-shaped array (CLsA) composed of two separated coprime linear arrays. The cross-correlation-based fourth-order coarray statistics are calculated to avoid the noise power perturbation. Then, different from averaging the partitioned coarray statistics as the conventional approaches did, a shifting coarray concatenation approach is developed to factorize these partitioned coarray statistics into multiple coarray tensors coupled in both angular and shifting dimensions. To fully exploit the spatial relevance among these coarray tensors, a coupled coarray tensor CPD approach is developed to jointly decompose them for two-dimensional DOA estimation. Moreover, based on the uniqueness condition analysis on the coupled coarray tensor CPD, the proposed method is capable of achieving an increased number of DOFs. Simulation results demonstrate that the proposed coupled coarray tensor CPD-based method presents a superior DOA estimation accuracy than the ordinary CPD-based methods for the CLsA.
Fig. 1: The geometry of the designed coprime L-shaped array.

the traditional L-shaped array [32, 33], the location of the first sensor in each coprime linear array \(L_i \) starts from 1 instead of 0 in the respective coordinate axis to maintain these two coprime linear arrays separated. Each coprime linear array \(L_i \) can be decomposed into a pair of sparse uniform linear subarrays with \(2M_{Li} \) and \(N_{Li} \) sensors, whose inter-element spacings are \(N_{Li}d \) and \(M_{Li}d \), respectively. Here, \(M_{Li} \) and \(N_{Li} \) are coprime integers with \(M_{Li} < N_{Li} \), and \(d \) equals to a half source wavelength. The sensors in \(L_1 \) and \(L_2 \) are respectively located at \(\{ (x_{L1}, 0)| x_{L1} = [q_1^{(1)}, q_2^{(1)}, \cdots, q_{j_{L1}}^{(1)}]d \} \) and \(\{ (0, y_{L2})| y_{L2} = [q_1^{(2)}, q_2^{(2)}, \cdots, y_{j_{L2}}^{(2)}]d \} \) with \(q_1^{(i)} = q_1^{(j)} = 1 \). Assume that there are \(K \) uncorrelated far-field narrowband sources impinging on the designed CLSA from directions \((\theta_k, \phi_k)\), where \(\theta_k \in [0, \pi] \) and \(\phi_k \in [-\pi/2, \pi/2] \) are the azimuth and elevation angles of the \(k \)-th source, \(k = 1, 2, \cdots, K \). The signals received by the coprime linear arrays \(L_i \) with \(T \) snapshots can be represented as

\[
X_{L_i} = \sum_{k=1}^{K} a_{L_i,k}(t) \circ s_k + N_{L_i} \in \mathbb{C}^{L_i \times T},
\]

where \(a_{L_i,k}(t) = [e^{-j\pi q_1^{(k)}}, e^{-j\pi q_2^{(k)}}, \cdots, e^{-j\pi q_{j_{L_i}}^{(k)}}]^{T} \) is the steering vector of \(L_i \) corresponding to the \(k \)-th source with directional parameters \(\mu_1(k) = \sin \phi_k \cos \theta_k \) and \(\mu_2(k) = \sin \phi_k \sin \theta_k \), \(s_k = [s_k(1), s_k(2), \cdots, s_k(T)]^{T} \) is the source waveform vector, and \(N_{L_i} \sim \mathcal{CN}(0, \sigma_n^2I) \) is the additive Gaussian noise. Here, \(\sigma_n^2 \) denotes the noise power, \(I \) denotes the identity matrix, \(\circ \) denotes the outer product, and \((\cdot)^{T} \) denotes the transpose operator.

To calculate the second-order statistics of sparse arrays, the conventional auto-correlation of \(X_{L_i} \) introduces the noise term \(E\{N_{L_i}N_{L_i}^{H}\} = \sigma_n^2I \) into the covariance matrix of the CLSA, which disturbs the subsequent crossarray processing. Here, \(E\{\cdot\} \) denotes the statistical expectation, and \((\cdot)^{H} \) denotes the conjugate transpose operator. In this regard, we consider to calculate the cross-correlation matrix \(R_{L_1L_2} \in \mathbb{C}^{L_1 \times L_2} \) of the two separated coprime linear arrays \(L_1 \) and \(L_2 \), i.e.,

\[
R_{L_1L_2} = E\{X_{L_1}X_{L_2}^{H}\} = \sum_{k=1}^{K} \sigma_k^2 a_{L_1,k}(t) \circ a_{L_2,k}^{*}(t),
\]

where \(\sigma_k^2 = E\{s_k(t)s_k^{*}(t)\} \) is the \(k \)-th source power, and \((\cdot)^{*} \) denotes the conjugate operator. It is clear from (2) that the noise term \(\sigma_n^2I \) is excluded from the cross-correlation matrix \(R_{L_1L_2} \). Nevertheless, the constituting steering vectors \(a_{L_1,k}(t) \) and \(a_{L_2,k}(t) \) contain different directional parameters \(\mu_1(k) \) and \(\mu_2(k) \), which are not capable of defining a difference set that corresponds to an augmented virtual array. Therefore, to increase the number of DOFs for DOA estimation, we propose to use the fourth-order statistics of \(L_1 \) and \(L_2 \), and a fourth-order tensor \(\mathbf{R} = R_{L_1L_2} \otimes R_{L_1L_2}^{*} = E\{X_{L_1}X_{L_2}^{H}\} \otimes (X_{L_1}X_{L_2}^{H})^{*} \) is obtained as

\[
\mathbf{R} = \sum_{k=1}^{K} \sigma_k^4 a_{L_1,k}(t) \circ a_{L_2,k}^{*}(t) \circ a_{L_1,k}^{*}(t) \circ a_{L_2,k}(t),
\]

where the conjugate steering vector pairs \(\{a_{L_1,k}(t), a_{L_1,k}^{*}(t)\} \) and \(\{a_{L_2,k}(t), a_{L_2,k}^{*}(t)\} \) allow a two-dimensional augmented virtual array formulation. In practice, we use the sample fourth-order tensor \(\mathbf{R} = (1/T)X_{L_1}X_{L_2}^{H} \otimes (1/T)X_{L_1}X_{L_2}^{H} \).

III. PROPOSED DOA ESTIMATION METHOD

A. Fourth-Order Tensor Reshaping for Coarray Signals

To derive an augmented virtual array associated with the designed CLSA, we combine the dimensions of the fourth-order tensor \(\mathbf{R} \) that represent the angular information along the same coordinate axis. Specifically, defining the dimension sets \(\{1, 3\} \) and \(\{2, 4\} \), \(\mathbf{R} \) is reshaped into the equivalent fourth-order signals of an augmented discontinuous virtual array \(\mathbb{V} \), i.e., \(\mathbb{V}_x \cong \mathbb{R}_{\{1,3\}, \{2,4\}} \in \mathbb{C}^{L_1 \times L_2 \times 1 \times 1} \), as

\[
\mathbb{V}_x = \sum_{k=1}^{K} \sigma_k^4 (a_{L_1,k}^{*}(t) \otimes a_{L_1,k}(t)) \otimes (a_{L_2,k}(t) \otimes a_{L_2,k}^{*}(t)),
\]

where \(\otimes \) denotes the Kronecker product. By extracting the contiguous part from \(\mathbb{V} \), a virtual uniform cross array (UCA) \(\mathbb{G} = \mathbb{G}_x \cup \mathbb{G}_y \) consisting of two virtual uniform linear arrays (ULAs) \(\mathbb{G}_x = \{(x_{G_x}, 0)| x_{G_x} = [q_{G_x}^{(1)}, q_{G_x}^{(2)}, \cdots, q_{G_x}^{(L_2)}]d \} \) and \(\mathbb{G}_y = \{(0, y_{G_y})| y_{G_y} = [q_{G_y}^{(1)}, q_{G_y}^{(2)}, \cdots, q_{G_y}^{(L_1)}]d \} \) as shown in Fig. 2 is obtained, where \(q_{G_x}^{(1)} = -M_{L_1}N_{L_1} - M_{L_1} + 2 \), \(q_{G_x}^{(L_2)} = M_{L_1}N_{L_1} + M_{L_1} + 1 \), \(q_{G_y}^{(1)} = -M_{L_2}N_{L_2} - M_{L_2} + 2 \), and \(q_{G_y}^{(L_1)} = M_{L_2}N_{L_2} + M_{L_2} + 2 \). Here, \(|\mathbb{G}_x| = 2(M_{L_1}N_{L_1} + M_{L_1}) - 1 \) and \(|\mathbb{G}_y| = 2(M_{L_2}N_{L_2} + M_{L_2}) - 1 \). Accordingly, the fourth-order coarray signals \(\mathbb{V}_G \) is \(\mathbb{V}_G \in \mathbb{C}^{|\mathbb{G}_x| \times |\mathbb{G}_y|} \) of \(\mathbb{G} \) can be obtained by reorganizing the elements of \(\mathbb{V}_x \) to map the locations of the corresponding virtual sensors in \(\mathbb{G} \), defined as

\[
\mathbb{V}_G = \sum_{k=1}^{K} \sigma_k^4 (b_{L_1,k}(t) \otimes b_{L_1,k}^{*}(t)),
\]

where \(b_{L_1,k}(t) = [e^{-j\pi q_{G_x}^{(1)}}\mu_1(t), e^{-j\pi q_{G_x}^{(2)}}\mu_1(t), \cdots, e^{-j\pi q_{G_x}^{(L_2)}}\mu_1(t)]^{T} \) and \(b_{L_2,k}(t) = [e^{-j\pi q_{G_y}^{(1)}}\mu_2(t), e^{-j\pi q_{G_y}^{(2)}}\mu_2(t), \cdots, e^{-j\pi q_{G_y}^{(L_1)}}\mu_2(t)]^{T} \).
are the steering vectors of G_x and G_y, respectively.

Since V_G behaves like the equivalent single-snapshot signals of the virtual UCA G, its resulting coarray tensor is rank-deficient. To address this problem, the traditional spatial smoothing-based approaches segment G into several subarrays and average the partitioned coarray statistics to a full-rank coarray tensor for a direct CPD [18–20]. However, such an operation suffers from a deteriorated coarray tensor CPD performance due to the ignorance of the spatial relevance among the partitioned coarray statistics. Therefore, it is necessary to develop a more effective coarray tensor processing strategy to make full use of these relevant coarray statistics.

B. Shifting Coarray Concatenation for Coupled Coarray Tensors

To exploit the inherent spatial relevance among the coarray statistics of the designed CLSAs, we propose a shifting coarray concatenation approach to factorize these coarray statistics into multiple coupled coarray tensors. Specifically, considering that the virtual ULAs G_x and G_y are respectively symmetric to the $x=1$ and the $y=1$ axes as shown in Fig. 2, we select the initial shifting windows $G^{(1)}_x = \{(x^{(1)}_G, 0)|x^{(1)}_G = [1, 2, \ldots, q_G^{(1)}]|d\}$ and $G^{(1)}_y = \{(0, y^{(1)}_G)|y^{(1)}_G = [1, 2, \ldots, q_G^{(1)}]|d\}$ from G_x and G_y, respectively. Then, by sequentially shifting $G^{(1)}_x$ along the x-axis by one step, P_x virtual subarrays $G^{(p_x)}_x = \{(x^{(p_x)}_G, 0)|x^{(p_x)}_G = [2 - p_x, 3 - p_x, \ldots, q_G^{(p_x)}_x + 1 - p_x]|d\}$, $p_x = 1, 2, \ldots, P_x$, are segmented from G_x, where $P_x = (|G_x| + 1)/2$. Similarly, the virtual ULA G_y can also be segmented into P_y virtual subarrays $G^{(p_y)}_y = \{(0, y^{(p_y)}_G)|y^{(p_y)}_G = [2 - p_y, 3 - p_y, \ldots, q_G^{(p_y)}_y + 1 - p_y]|d\}$, $p_y = 1, 2, \ldots, P_y$, with $P_y = (|G_y| + 1)/2$. Accordingly, the coarray signals of the virtual subarray $G^{(p_x,p_y)}_x \cup G^{(p_y)}_y$ can be partitioned from V_G as $U_{G^{(p_x,p_y)}} = V_G\cap [\xi_{G^{(p_x)}_x} - \xi_{G^{(p_y)}_y}] \in \mathbb{C}^{(|G_x| \times |G_y|) \times P_{x+y}}$, defined as

$$U_{G^{(p_x,p_y)}} = \sum_{k=1}^{K} \sigma^{s_1}_k g^{(p_x)}_x(k) \circ g^{(p_y)}_y(k),$$

where $g^{(p_x)}_x(k)$ denotes the steering vector of the initial shifting window $G^{(p_x)}_x$, and $g^{(p_y)}_y(k) = [1, e^{\pi/(\mu_{2x}(k)), \ldots, e^{\pi/(P_x-1)\mu_{2x}(k)}]^T$ denotes the shifting factor along the y-axis. Here, $G^{(p_x)}_x = \{g^{(p_x)}_x(1), g^{(p_x)}_x(2), \ldots, g^{(p_x)}_x(K)\} \in \mathbb{C}^{(|G_x| \times K)}$, $G^{(p_y)}_y = \{g^{(p_y)}_y(1), g^{(p_y)}_y(2), \ldots, g^{(p_y)}_y(K)\} \in \mathbb{C}^{(|G_y| \times K)}$, and $Q_y = [q_y(1), q_y(2), \ldots, q_y(K)] \in \mathbb{C}^{P_y \times K}$ are the factor matrices of U_{p_y}. $\cdot \cup \cdot$ denotes the tensor concatenation operation along the \cdot-th dimension, and \cdot denotes the canonical polyadic modeling of a tensor.

Since the angular information of the initial shifting window $G^{(1)}_y$ and the shifting information along the y-axis jointly characterize the spatial information of the virtual subarrays $G^{(p_x,1)}_x$, all the P_x coarray tensors U_{p_x} present a strong relevance by coupling the common factor matrices $G^{(1)}_y$ and Q_y. Note that, the shifting coarray signals of the P_x virtual subarrays $G^{(p_x,1)}_x$ with a fixed index p_y can also be concatenated for generating coarray tensors with coupled angular information of the initial shifting window $G^{(1)}_x$ and the corresponding shifting information along the x-axis.

C. Coupled Coarray Tensor CPD for DOA Estimation

To make full use of the spatial relevance among the formulated coarray tensors U_{p_x}, the coupled coarray tensor CPD is proposed to jointly decompose them to estimate their respective factor matrices $G^{(p_x)}_x$, $p_x = 1, 2, \ldots, P_x$, and the pair of coupled ones $\{G^{(1)}_x, Q_y\}$. Specifically, the summation of the canonical polyadic approximation error for all coarray tensors coupled in both angular and shifting dimensions is minimized by the following tensor-based least squares problem

$$\min_{G^{(p_x)}_x, G^{(1)}_y, Q_y} \sum_{p_x, p_y} \left\| U_{p_{x,y}} - [G^{(p_x)}_x, G^{(1)}_y, Q_y]\right\|_{F}^2,$$

where $\cdot \| \cdot \|_F$ denotes the Frobenius norm.

The coupled coarray tensor CPD optimization problem (8) can be solved by the alternative least squares (ALS) technique to yield $\{G^{(p_x)}_x, G^{(1)}_y, Q_y\}$ consisting of the estimated factors $\{g^{(p_x)}_x(k), g^{(1)}_y(k), q_y(k)\}, k = 1, 2, \ldots, K$. According to the definition of $\{g^{(p_x)}_x(k), g^{(1)}_y(k), q_y(k)\}$ established in Section III-B, their constituting directional parameters $(\mu_1(k), \mu_2(k))$ can be retrieved as

$$\mu_1(k) = \left(\sum_{p_x} w^{(1)}_{p_x} \angle (g^{(p_x)}_x(k))/\pi \right)/P_x,$$

$$\mu_2(k) = \left(w^{(1)}_1 \angle (g^{(1)}_y(k))/\pi \right)/2,$$

where $w^{(p_x)}_x = [2 - p_x, 3 - p_x, \ldots, q_G^{(p_x)} + 1 - p_x]^T$ and $w^{(1)}_1 = [1, 2, \ldots, q_G^{(1)}]^T$ respectively represent the indices of virtual sensors in $G^{(p_x)}_x$ and $G^{(1)}_y$, and $z = [0, 1, \ldots, P_y - 1]^T$ represents the shifting steps along the y-axis. Here, $\angle (\cdot)$ denotes the phase of a complex number, and $(\cdot)^\dagger$ denotes the pseudoinverse operator. According to the relationship between the directional parameters $(\mu_1(k), \mu_2(k))$ and (θ_k, ϕ_k) defined in Section II, the closed-form azimuth and elevation angle of the k-th source can then be estimated as

$$\theta_k = \arctan(\mu_2(k)/\mu_1(k)), \quad \phi_k = \sqrt{\mu_1^2(k) + \mu_2^2(k)}.$$
IV. ANALYSIS ON THE ACHIEVABLE DOFS OF COUPLED COARRAY TENSOR CPD

Based on the uniqueness condition of the coupled CPD [34], the proposed coupled coarray tensor CPD is sufficiently unique if the following properties hold:

(i) \(\kappa(Q_y) \geq 1 \);

(ii) \(\min(|G_x(p_x)|, |G_y(1)|) \geq K - r(Q_y) + 2 \);

(iii) \(B_m(G_x^{(1)}) \circ B_m(G_y^{(1)}) \in \mathbb{C}^{\left|C_{m}^{1}\right| \times \left|C_{m}^{K}\right|} \) has a full column rank, where \(m = K - r(Q_y) + 2 \), and \(B_m(G_x^{(1)}) \in \mathbb{C}^{\left|C_{m}^{1}\right|} \) is the \(m \)-th compound matrix of \(G_x^{(1)} \);

(iv) There exists a subset \(\mathcal{T} \subseteq \{1, 2, \ldots, K\} \) to guarantee that \(\{Q_y\}_\mathcal{T} \in \mathbb{C}^{p_y \times |\mathcal{T}|} \), \(\{G_x^{(p_x)}\}_\mathcal{T} \in \mathbb{C}^{p_x \times |\mathcal{K} - |\mathcal{T}||} \) and \(\{G_y^{(1)}\}_\mathcal{T} \in \mathbb{C}^{p_y \times |\mathcal{K} - |\mathcal{T}||} \) have a full column rank, where \(\{Q_y\}_\mathcal{T} \) stacks the columns of \(Q_y \) indexed by \(\mathcal{T} \) with \(|\mathcal{T}| \leq r(Q_y) \), and \(\mathcal{T} \) is the complement set of \(\mathcal{T} \).

Here, \(\kappa(\cdot) \) denotes the Kruskal rank, \(r(\cdot) \) denotes the matrix rank, \(C_j^{(i)} = \frac{2(j - 1)}{i(i - 1)} \) denotes the binomial coefficient, and \(\circ \) denotes the Khatri-Rao product.

For the formulated coupled coarray tensors \(U_{(p_x, \phi)} \), since we have \(\kappa(Q_y) = \min(P_y, K) = P_y \), the property \(\kappa(Q_y) \geq 1 \) is satisfied. Then, when deploying a CLSA with \(|\mathcal{L}_1| \leq |\mathcal{L}_2| \), we have \(\min(|G_x^{(p_x)}|, |G_y^{(1)}|) = |G_x^{(p_x)}| \), such that the Property (ii) can be satisfied as long as

\[
|G_x^{(p_x)}| + P_y - 2 \geq K.
\]

(11)

Based on such an upper bound for \(K \) in (11) and the resulting upper bound \(m \leq |G_x^{(p_x)}| \), Property (iii) can be guaranteed thanks to its relaxed constraint. Moreover, the subset \(\mathcal{T} \) ensures that the factor matrix of the coupled coarray tensors \(Q_y \) has a full column rank due to \(|\mathcal{T}| \leq P_y \). Meanwhile, considering \(K - |\mathcal{T}| \leq \min(|G_x^{(p_x)}|, |G_y^{(1)}|), |G_x^{(p_x)}|, |G_y^{(1)}| \) also have a full column rank since all their columns are non-collinear. Therefore, the achievable number of DOFs for the proposed coupled coarray tensor CPD-based DOA estimation method is \(|G_x^{(p_x)}| + P_y - 2\), which exceeds the number of physical sensors in the designed CLSA. This implies that the proposed method maintains an increased number of DOFs.

V. SIMULATION RESULTS

Consider the CLSA with \(M_{L_1} = M_{L_2} = 2 \) and \(N_{L_1} = N_{L_2} = 3 \), where the total number of sensors is 12. As such, the derived virtual UCA \(G \) contains \(|G_x| = 15 \) and \(|G_y| = 15 \) virtual sensors in the \(x, y \)-axes, respectively. Thus, we have \(|G_x^{(p_x)}| = 8 \) and \(P_y = 8 \), resulting the achievable number of DOFs to be \(|G_x^{(p_x)}| + P_y - 2 = 14 \). The ordinary CPD and the coupled coarray tensor CPD are both implemented with the tensorlab 3.0 [35].

The underdetermined DOA estimation performance of the proposed method is presented in Fig. 3 with noise-free snapshots, where the cases of \(K = 12 \) and \(K = 14 \) sources with \(\mu_1 = 94 \) are considered. It is clear that the proposed method is capable of locating all sources in the underdetermined circumstances, which validates the increased number of DOFs contributed by the designed coupled coarray tensor CPD.

Then, the estimation accuracy of the proposed method is compared to the coarray ESPRIT method with a matrix-based processing technique [36] and the coarray-based tensor MUSIC method using the ordinary CPD approach [18]. Two sources are assumed to impinge on the CLSA from \((\theta_1, \phi_1) = (20.5^\circ, 30.5^\circ) \) and \((\theta_2, \phi_2) = (45.6^\circ, 40.6^\circ) \), and 1,000 Monte-Carlo trials are performed to calculate the root-mean-square error (RMSE) for each scenario. It is demonstrated in Fig. 4 that the proposed coupled coarray tensor CPD-based DOA estimation method exhibits a significant improvement in estimation accuracy than the coarray ESPRIT method due to the tensor-based modeling for coarray statistics. In addition, the proposed method also outperforms the coarray-based tensor MUSIC method especially under the conditions of low SNR and limited snapshots. It is because that the proposed coupled coarray tensor CPD approach fully exploits the spatial relevance among the formulated coarray tensors, which is ignored by directly applying ordinary CPD on a spatially smoothed coarray tensor.

VI. CONCLUSION

A coupled coarray tensor CPD-based DOA estimation method was proposed for a specially designed coprime L-shaped array. The shifting coarray concatenation approach is developed to formulate multiple coupled coarray tensors for joint decomposition. Due to the utilization of spatial relevance among these coarray tensors, the DOA estimation accuracy is effectively improved with an increased number of DOFs.
REFERENCES

